ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq2w GIF version

Theorem prodeq2w 11563
Description: Equality theorem for product, when the class expressions ๐ต and ๐ถ are equal everywhere. Proved using only Extensionality. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
prodeq2w (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ โˆ๐‘˜ โˆˆ ๐ด ๐ต = โˆ๐‘˜ โˆˆ ๐ด ๐ถ)
Distinct variable group:   ๐ด,๐‘˜
Allowed substitution hints:   ๐ต(๐‘˜)   ๐ถ(๐‘˜)

Proof of Theorem prodeq2w
Dummy variables ๐‘“ ๐‘— ๐‘š ๐‘› ๐‘ฅ ๐‘ฆ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . . . . . . . . . . 13 โ„ค = โ„ค
2 ifeq1 3537 . . . . . . . . . . . . . . 15 (๐ต = ๐ถ โ†’ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1) = if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))
32alimi 1455 . . . . . . . . . . . . . 14 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ โˆ€๐‘˜if(๐‘˜ โˆˆ ๐ด, ๐ต, 1) = if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))
4 alral 2522 . . . . . . . . . . . . . 14 (โˆ€๐‘˜if(๐‘˜ โˆˆ ๐ด, ๐ต, 1) = if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1) โ†’ โˆ€๐‘˜ โˆˆ โ„ค if(๐‘˜ โˆˆ ๐ด, ๐ต, 1) = if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))
53, 4syl 14 . . . . . . . . . . . . 13 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ โˆ€๐‘˜ โˆˆ โ„ค if(๐‘˜ โˆˆ ๐ด, ๐ต, 1) = if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))
6 mpteq12 4086 . . . . . . . . . . . . 13 ((โ„ค = โ„ค โˆง โˆ€๐‘˜ โˆˆ โ„ค if(๐‘˜ โˆˆ ๐ด, ๐ต, 1) = if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1)) โ†’ (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1)) = (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1)))
71, 5, 6sylancr 414 . . . . . . . . . . . 12 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1)) = (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1)))
87seqeq3d 10452 . . . . . . . . . . 11 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) = seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))))
98breq1d 4013 . . . . . . . . . 10 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ (seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฆ โ†” seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฆ))
109anbi2d 464 . . . . . . . . 9 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ ((๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฆ) โ†” (๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฆ)))
1110exbidv 1825 . . . . . . . 8 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ (โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฆ) โ†” โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฆ)))
1211rexbidv 2478 . . . . . . 7 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ (โˆƒ๐‘› โˆˆ (โ„คโ‰ฅโ€˜๐‘š)โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฆ) โ†” โˆƒ๐‘› โˆˆ (โ„คโ‰ฅโ€˜๐‘š)โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฆ)))
137seqeq3d 10452 . . . . . . . 8 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) = seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))))
1413breq1d 4013 . . . . . . 7 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ (seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฅ โ†” seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฅ))
1512, 14anbi12d 473 . . . . . 6 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ ((โˆƒ๐‘› โˆˆ (โ„คโ‰ฅโ€˜๐‘š)โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฆ) โˆง seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฅ) โ†” (โˆƒ๐‘› โˆˆ (โ„คโ‰ฅโ€˜๐‘š)โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฆ) โˆง seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฅ)))
1615anbi2d 464 . . . . 5 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ (((๐ด โŠ† (โ„คโ‰ฅโ€˜๐‘š) โˆง โˆ€๐‘— โˆˆ (โ„คโ‰ฅโ€˜๐‘š)DECID ๐‘— โˆˆ ๐ด) โˆง (โˆƒ๐‘› โˆˆ (โ„คโ‰ฅโ€˜๐‘š)โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฆ) โˆง seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฅ)) โ†” ((๐ด โŠ† (โ„คโ‰ฅโ€˜๐‘š) โˆง โˆ€๐‘— โˆˆ (โ„คโ‰ฅโ€˜๐‘š)DECID ๐‘— โˆˆ ๐ด) โˆง (โˆƒ๐‘› โˆˆ (โ„คโ‰ฅโ€˜๐‘š)โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฆ) โˆง seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฅ))))
1716rexbidv 2478 . . . 4 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ (โˆƒ๐‘š โˆˆ โ„ค ((๐ด โŠ† (โ„คโ‰ฅโ€˜๐‘š) โˆง โˆ€๐‘— โˆˆ (โ„คโ‰ฅโ€˜๐‘š)DECID ๐‘— โˆˆ ๐ด) โˆง (โˆƒ๐‘› โˆˆ (โ„คโ‰ฅโ€˜๐‘š)โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฆ) โˆง seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฅ)) โ†” โˆƒ๐‘š โˆˆ โ„ค ((๐ด โŠ† (โ„คโ‰ฅโ€˜๐‘š) โˆง โˆ€๐‘— โˆˆ (โ„คโ‰ฅโ€˜๐‘š)DECID ๐‘— โˆˆ ๐ด) โˆง (โˆƒ๐‘› โˆˆ (โ„คโ‰ฅโ€˜๐‘š)โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฆ) โˆง seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฅ))))
18 csbeq2 3081 . . . . . . . . . . . 12 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ต = โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ถ)
1918ifeq1d 3551 . . . . . . . . . . 11 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ต, 1) = if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ถ, 1))
2019mpteq2dv 4094 . . . . . . . . . 10 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ต, 1)) = (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ถ, 1)))
2120seqeq3d 10452 . . . . . . . . 9 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ต, 1))) = seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ถ, 1))))
2221fveq1d 5517 . . . . . . . 8 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ต, 1)))โ€˜๐‘š) = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ถ, 1)))โ€˜๐‘š))
2322eqeq2d 2189 . . . . . . 7 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ (๐‘ฅ = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ต, 1)))โ€˜๐‘š) โ†” ๐‘ฅ = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ถ, 1)))โ€˜๐‘š)))
2423anbi2d 464 . . . . . 6 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ ((๐‘“:(1...๐‘š)โ€“1-1-ontoโ†’๐ด โˆง ๐‘ฅ = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ต, 1)))โ€˜๐‘š)) โ†” (๐‘“:(1...๐‘š)โ€“1-1-ontoโ†’๐ด โˆง ๐‘ฅ = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ถ, 1)))โ€˜๐‘š))))
2524exbidv 1825 . . . . 5 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ (โˆƒ๐‘“(๐‘“:(1...๐‘š)โ€“1-1-ontoโ†’๐ด โˆง ๐‘ฅ = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ต, 1)))โ€˜๐‘š)) โ†” โˆƒ๐‘“(๐‘“:(1...๐‘š)โ€“1-1-ontoโ†’๐ด โˆง ๐‘ฅ = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ถ, 1)))โ€˜๐‘š))))
2625rexbidv 2478 . . . 4 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ (โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘“(๐‘“:(1...๐‘š)โ€“1-1-ontoโ†’๐ด โˆง ๐‘ฅ = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ต, 1)))โ€˜๐‘š)) โ†” โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘“(๐‘“:(1...๐‘š)โ€“1-1-ontoโ†’๐ด โˆง ๐‘ฅ = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ถ, 1)))โ€˜๐‘š))))
2717, 26orbi12d 793 . . 3 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ ((โˆƒ๐‘š โˆˆ โ„ค ((๐ด โŠ† (โ„คโ‰ฅโ€˜๐‘š) โˆง โˆ€๐‘— โˆˆ (โ„คโ‰ฅโ€˜๐‘š)DECID ๐‘— โˆˆ ๐ด) โˆง (โˆƒ๐‘› โˆˆ (โ„คโ‰ฅโ€˜๐‘š)โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฆ) โˆง seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฅ)) โˆจ โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘“(๐‘“:(1...๐‘š)โ€“1-1-ontoโ†’๐ด โˆง ๐‘ฅ = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ต, 1)))โ€˜๐‘š))) โ†” (โˆƒ๐‘š โˆˆ โ„ค ((๐ด โŠ† (โ„คโ‰ฅโ€˜๐‘š) โˆง โˆ€๐‘— โˆˆ (โ„คโ‰ฅโ€˜๐‘š)DECID ๐‘— โˆˆ ๐ด) โˆง (โˆƒ๐‘› โˆˆ (โ„คโ‰ฅโ€˜๐‘š)โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฆ) โˆง seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฅ)) โˆจ โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘“(๐‘“:(1...๐‘š)โ€“1-1-ontoโ†’๐ด โˆง ๐‘ฅ = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ถ, 1)))โ€˜๐‘š)))))
2827iotabidv 5199 . 2 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ (โ„ฉ๐‘ฅ(โˆƒ๐‘š โˆˆ โ„ค ((๐ด โŠ† (โ„คโ‰ฅโ€˜๐‘š) โˆง โˆ€๐‘— โˆˆ (โ„คโ‰ฅโ€˜๐‘š)DECID ๐‘— โˆˆ ๐ด) โˆง (โˆƒ๐‘› โˆˆ (โ„คโ‰ฅโ€˜๐‘š)โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฆ) โˆง seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฅ)) โˆจ โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘“(๐‘“:(1...๐‘š)โ€“1-1-ontoโ†’๐ด โˆง ๐‘ฅ = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ต, 1)))โ€˜๐‘š)))) = (โ„ฉ๐‘ฅ(โˆƒ๐‘š โˆˆ โ„ค ((๐ด โŠ† (โ„คโ‰ฅโ€˜๐‘š) โˆง โˆ€๐‘— โˆˆ (โ„คโ‰ฅโ€˜๐‘š)DECID ๐‘— โˆˆ ๐ด) โˆง (โˆƒ๐‘› โˆˆ (โ„คโ‰ฅโ€˜๐‘š)โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฆ) โˆง seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฅ)) โˆจ โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘“(๐‘“:(1...๐‘š)โ€“1-1-ontoโ†’๐ด โˆง ๐‘ฅ = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ถ, 1)))โ€˜๐‘š)))))
29 df-proddc 11558 . 2 โˆ๐‘˜ โˆˆ ๐ด ๐ต = (โ„ฉ๐‘ฅ(โˆƒ๐‘š โˆˆ โ„ค ((๐ด โŠ† (โ„คโ‰ฅโ€˜๐‘š) โˆง โˆ€๐‘— โˆˆ (โ„คโ‰ฅโ€˜๐‘š)DECID ๐‘— โˆˆ ๐ด) โˆง (โˆƒ๐‘› โˆˆ (โ„คโ‰ฅโ€˜๐‘š)โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฆ) โˆง seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ต, 1))) โ‡ ๐‘ฅ)) โˆจ โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘“(๐‘“:(1...๐‘š)โ€“1-1-ontoโ†’๐ด โˆง ๐‘ฅ = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ต, 1)))โ€˜๐‘š))))
30 df-proddc 11558 . 2 โˆ๐‘˜ โˆˆ ๐ด ๐ถ = (โ„ฉ๐‘ฅ(โˆƒ๐‘š โˆˆ โ„ค ((๐ด โŠ† (โ„คโ‰ฅโ€˜๐‘š) โˆง โˆ€๐‘— โˆˆ (โ„คโ‰ฅโ€˜๐‘š)DECID ๐‘— โˆˆ ๐ด) โˆง (โˆƒ๐‘› โˆˆ (โ„คโ‰ฅโ€˜๐‘š)โˆƒ๐‘ฆ(๐‘ฆ # 0 โˆง seq๐‘›( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฆ) โˆง seq๐‘š( ยท , (๐‘˜ โˆˆ โ„ค โ†ฆ if(๐‘˜ โˆˆ ๐ด, ๐ถ, 1))) โ‡ ๐‘ฅ)) โˆจ โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘“(๐‘“:(1...๐‘š)โ€“1-1-ontoโ†’๐ด โˆง ๐‘ฅ = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โ‰ค ๐‘š, โฆ‹(๐‘“โ€˜๐‘›) / ๐‘˜โฆŒ๐ถ, 1)))โ€˜๐‘š))))
3128, 29, 303eqtr4g 2235 1 (โˆ€๐‘˜ ๐ต = ๐ถ โ†’ โˆ๐‘˜ โˆˆ ๐ด ๐ต = โˆ๐‘˜ โˆˆ ๐ด ๐ถ)
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โˆจ wo 708  DECID wdc 834  โˆ€wal 1351   = wceq 1353  โˆƒwex 1492   โˆˆ wcel 2148  โˆ€wral 2455  โˆƒwrex 2456  โฆ‹csb 3057   โŠ† wss 3129  ifcif 3534   class class class wbr 4003   โ†ฆ cmpt 4064  โ„ฉcio 5176  โ€“1-1-ontoโ†’wf1o 5215  โ€˜cfv 5216  (class class class)co 5874  0cc0 7810  1c1 7811   ยท cmul 7815   โ‰ค cle 7992   # cap 8537  โ„•cn 8918  โ„คcz 9252  โ„คโ‰ฅcuz 9527  ...cfz 10007  seqcseq 10444   โ‡ cli 11285  โˆcprod 11557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-cnv 4634  df-dm 4636  df-rn 4637  df-res 4638  df-iota 5178  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-recs 6305  df-frec 6391  df-seqfrec 10445  df-proddc 11558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator