Step | Hyp | Ref
| Expression |
1 | | eqid 2177 |
. . . . . . . . . . . . 13
โข โค =
โค |
2 | | ifeq1 3537 |
. . . . . . . . . . . . . . 15
โข (๐ต = ๐ถ โ if(๐ โ ๐ด, ๐ต, 1) = if(๐ โ ๐ด, ๐ถ, 1)) |
3 | 2 | alimi 1455 |
. . . . . . . . . . . . . 14
โข
(โ๐ ๐ต = ๐ถ โ โ๐if(๐ โ ๐ด, ๐ต, 1) = if(๐ โ ๐ด, ๐ถ, 1)) |
4 | | alral 2522 |
. . . . . . . . . . . . . 14
โข
(โ๐if(๐ โ ๐ด, ๐ต, 1) = if(๐ โ ๐ด, ๐ถ, 1) โ โ๐ โ โค if(๐ โ ๐ด, ๐ต, 1) = if(๐ โ ๐ด, ๐ถ, 1)) |
5 | 3, 4 | syl 14 |
. . . . . . . . . . . . 13
โข
(โ๐ ๐ต = ๐ถ โ โ๐ โ โค if(๐ โ ๐ด, ๐ต, 1) = if(๐ โ ๐ด, ๐ถ, 1)) |
6 | | mpteq12 4086 |
. . . . . . . . . . . . 13
โข ((โค
= โค โง โ๐
โ โค if(๐ โ
๐ด, ๐ต, 1) = if(๐ โ ๐ด, ๐ถ, 1)) โ (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1)) = (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) |
7 | 1, 5, 6 | sylancr 414 |
. . . . . . . . . . . 12
โข
(โ๐ ๐ต = ๐ถ โ (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1)) = (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) |
8 | 7 | seqeq3d 10452 |
. . . . . . . . . . 11
โข
(โ๐ ๐ต = ๐ถ โ seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) = seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1)))) |
9 | 8 | breq1d 4013 |
. . . . . . . . . 10
โข
(โ๐ ๐ต = ๐ถ โ (seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฆ โ seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฆ)) |
10 | 9 | anbi2d 464 |
. . . . . . . . 9
โข
(โ๐ ๐ต = ๐ถ โ ((๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฆ) โ (๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฆ))) |
11 | 10 | exbidv 1825 |
. . . . . . . 8
โข
(โ๐ ๐ต = ๐ถ โ (โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฆ) โ โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฆ))) |
12 | 11 | rexbidv 2478 |
. . . . . . 7
โข
(โ๐ ๐ต = ๐ถ โ (โ๐ โ (โคโฅโ๐)โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฆ) โ โ๐ โ (โคโฅโ๐)โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฆ))) |
13 | 7 | seqeq3d 10452 |
. . . . . . . 8
โข
(โ๐ ๐ต = ๐ถ โ seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) = seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1)))) |
14 | 13 | breq1d 4013 |
. . . . . . 7
โข
(โ๐ ๐ต = ๐ถ โ (seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฅ โ seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฅ)) |
15 | 12, 14 | anbi12d 473 |
. . . . . 6
โข
(โ๐ ๐ต = ๐ถ โ ((โ๐ โ (โคโฅโ๐)โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฆ) โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฅ) โ (โ๐ โ (โคโฅโ๐)โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฆ) โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฅ))) |
16 | 15 | anbi2d 464 |
. . . . 5
โข
(โ๐ ๐ต = ๐ถ โ (((๐ด โ (โคโฅโ๐) โง โ๐ โ
(โคโฅโ๐)DECID ๐ โ ๐ด) โง (โ๐ โ (โคโฅโ๐)โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฆ) โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฅ)) โ ((๐ด โ (โคโฅโ๐) โง โ๐ โ
(โคโฅโ๐)DECID ๐ โ ๐ด) โง (โ๐ โ (โคโฅโ๐)โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฆ) โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฅ)))) |
17 | 16 | rexbidv 2478 |
. . . 4
โข
(โ๐ ๐ต = ๐ถ โ (โ๐ โ โค ((๐ด โ (โคโฅโ๐) โง โ๐ โ
(โคโฅโ๐)DECID ๐ โ ๐ด) โง (โ๐ โ (โคโฅโ๐)โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฆ) โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฅ)) โ โ๐ โ โค ((๐ด โ (โคโฅโ๐) โง โ๐ โ
(โคโฅโ๐)DECID ๐ โ ๐ด) โง (โ๐ โ (โคโฅโ๐)โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฆ) โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฅ)))) |
18 | | csbeq2 3081 |
. . . . . . . . . . . 12
โข
(โ๐ ๐ต = ๐ถ โ โฆ(๐โ๐) / ๐โฆ๐ต = โฆ(๐โ๐) / ๐โฆ๐ถ) |
19 | 18 | ifeq1d 3551 |
. . . . . . . . . . 11
โข
(โ๐ ๐ต = ๐ถ โ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ต, 1) = if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ถ, 1)) |
20 | 19 | mpteq2dv 4094 |
. . . . . . . . . 10
โข
(โ๐ ๐ต = ๐ถ โ (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ต, 1)) = (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ถ, 1))) |
21 | 20 | seqeq3d 10452 |
. . . . . . . . 9
โข
(โ๐ ๐ต = ๐ถ โ seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ต, 1))) = seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ถ, 1)))) |
22 | 21 | fveq1d 5517 |
. . . . . . . 8
โข
(โ๐ ๐ต = ๐ถ โ (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ต, 1)))โ๐) = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ถ, 1)))โ๐)) |
23 | 22 | eqeq2d 2189 |
. . . . . . 7
โข
(โ๐ ๐ต = ๐ถ โ (๐ฅ = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ต, 1)))โ๐) โ ๐ฅ = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ถ, 1)))โ๐))) |
24 | 23 | anbi2d 464 |
. . . . . 6
โข
(โ๐ ๐ต = ๐ถ โ ((๐:(1...๐)โ1-1-ontoโ๐ด โง ๐ฅ = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ต, 1)))โ๐)) โ (๐:(1...๐)โ1-1-ontoโ๐ด โง ๐ฅ = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ถ, 1)))โ๐)))) |
25 | 24 | exbidv 1825 |
. . . . 5
โข
(โ๐ ๐ต = ๐ถ โ (โ๐(๐:(1...๐)โ1-1-ontoโ๐ด โง ๐ฅ = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ต, 1)))โ๐)) โ โ๐(๐:(1...๐)โ1-1-ontoโ๐ด โง ๐ฅ = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ถ, 1)))โ๐)))) |
26 | 25 | rexbidv 2478 |
. . . 4
โข
(โ๐ ๐ต = ๐ถ โ (โ๐ โ โ โ๐(๐:(1...๐)โ1-1-ontoโ๐ด โง ๐ฅ = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ต, 1)))โ๐)) โ โ๐ โ โ โ๐(๐:(1...๐)โ1-1-ontoโ๐ด โง ๐ฅ = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ถ, 1)))โ๐)))) |
27 | 17, 26 | orbi12d 793 |
. . 3
โข
(โ๐ ๐ต = ๐ถ โ ((โ๐ โ โค ((๐ด โ (โคโฅโ๐) โง โ๐ โ
(โคโฅโ๐)DECID ๐ โ ๐ด) โง (โ๐ โ (โคโฅโ๐)โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฆ) โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฅ)) โจ โ๐ โ โ โ๐(๐:(1...๐)โ1-1-ontoโ๐ด โง ๐ฅ = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ต, 1)))โ๐))) โ (โ๐ โ โค ((๐ด โ (โคโฅโ๐) โง โ๐ โ
(โคโฅโ๐)DECID ๐ โ ๐ด) โง (โ๐ โ (โคโฅโ๐)โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฆ) โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฅ)) โจ โ๐ โ โ โ๐(๐:(1...๐)โ1-1-ontoโ๐ด โง ๐ฅ = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ถ, 1)))โ๐))))) |
28 | 27 | iotabidv 5199 |
. 2
โข
(โ๐ ๐ต = ๐ถ โ (โฉ๐ฅ(โ๐ โ โค ((๐ด โ (โคโฅโ๐) โง โ๐ โ
(โคโฅโ๐)DECID ๐ โ ๐ด) โง (โ๐ โ (โคโฅโ๐)โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฆ) โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฅ)) โจ โ๐ โ โ โ๐(๐:(1...๐)โ1-1-ontoโ๐ด โง ๐ฅ = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ต, 1)))โ๐)))) = (โฉ๐ฅ(โ๐ โ โค ((๐ด โ (โคโฅโ๐) โง โ๐ โ
(โคโฅโ๐)DECID ๐ โ ๐ด) โง (โ๐ โ (โคโฅโ๐)โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฆ) โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฅ)) โจ โ๐ โ โ โ๐(๐:(1...๐)โ1-1-ontoโ๐ด โง ๐ฅ = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ถ, 1)))โ๐))))) |
29 | | df-proddc 11558 |
. 2
โข
โ๐ โ
๐ด ๐ต = (โฉ๐ฅ(โ๐ โ โค ((๐ด โ (โคโฅโ๐) โง โ๐ โ
(โคโฅโ๐)DECID ๐ โ ๐ด) โง (โ๐ โ (โคโฅโ๐)โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฆ) โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ต, 1))) โ ๐ฅ)) โจ โ๐ โ โ โ๐(๐:(1...๐)โ1-1-ontoโ๐ด โง ๐ฅ = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ต, 1)))โ๐)))) |
30 | | df-proddc 11558 |
. 2
โข
โ๐ โ
๐ด ๐ถ = (โฉ๐ฅ(โ๐ โ โค ((๐ด โ (โคโฅโ๐) โง โ๐ โ
(โคโฅโ๐)DECID ๐ โ ๐ด) โง (โ๐ โ (โคโฅโ๐)โ๐ฆ(๐ฆ # 0 โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฆ) โง seq๐( ยท , (๐ โ โค โฆ if(๐ โ ๐ด, ๐ถ, 1))) โ ๐ฅ)) โจ โ๐ โ โ โ๐(๐:(1...๐)โ1-1-ontoโ๐ด โง ๐ฅ = (seq1( ยท , (๐ โ โ โฆ if(๐ โค ๐, โฆ(๐โ๐) / ๐โฆ๐ถ, 1)))โ๐)))) |
31 | 28, 29, 30 | 3eqtr4g 2235 |
1
โข
(โ๐ ๐ต = ๐ถ โ โ๐ โ ๐ด ๐ต = โ๐ โ ๐ด ๐ถ) |