Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abnex | GIF version |
Description: Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 4426 and pwnex 4427. See the comment of abnexg 4424. (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
abnex | ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 4114 | . 2 ⊢ ¬ V ∈ V | |
2 | alral 2511 | . . 3 ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ∀𝑥 ∈ V (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹)) | |
3 | rexv 2744 | . . . . . . 7 ⊢ (∃𝑥 ∈ V 𝑦 = 𝐹 ↔ ∃𝑥 𝑦 = 𝐹) | |
4 | 3 | bicomi 131 | . . . . . 6 ⊢ (∃𝑥 𝑦 = 𝐹 ↔ ∃𝑥 ∈ V 𝑦 = 𝐹) |
5 | 4 | abbii 2282 | . . . . 5 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} |
6 | 5 | eleq1i 2232 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V ↔ {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V) |
7 | 6 | biimpi 119 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V → {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V) |
8 | abnexg 4424 | . . 3 ⊢ (∀𝑥 ∈ V (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V → V ∈ V)) | |
9 | 2, 7, 8 | syl2im 38 | . 2 ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V → V ∈ V)) |
10 | 1, 9 | mtoi 654 | 1 ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∀wal 1341 = wceq 1343 ∃wex 1480 ∈ wcel 2136 {cab 2151 ∀wral 2444 ∃wrex 2445 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-sn 3582 df-uni 3790 df-iun 3868 |
This theorem is referenced by: pwnex 4427 |
Copyright terms: Public domain | W3C validator |