ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abnex GIF version

Theorem abnex 4478
Description: Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 4479 and pwnex 4480. See the comment of abnexg 4477. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
abnex (∀𝑥(𝐹𝑉𝑥𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹
Allowed substitution hints:   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem abnex
StepHypRef Expression
1 vprc 4161 . 2 ¬ V ∈ V
2 alral 2539 . . 3 (∀𝑥(𝐹𝑉𝑥𝐹) → ∀𝑥 ∈ V (𝐹𝑉𝑥𝐹))
3 rexv 2778 . . . . . . 7 (∃𝑥 ∈ V 𝑦 = 𝐹 ↔ ∃𝑥 𝑦 = 𝐹)
43bicomi 132 . . . . . 6 (∃𝑥 𝑦 = 𝐹 ↔ ∃𝑥 ∈ V 𝑦 = 𝐹)
54abbii 2309 . . . . 5 {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹}
65eleq1i 2259 . . . 4 ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V ↔ {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V)
76biimpi 120 . . 3 ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V → {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V)
8 abnexg 4477 . . 3 (∀𝑥 ∈ V (𝐹𝑉𝑥𝐹) → ({𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V → V ∈ V))
92, 7, 8syl2im 38 . 2 (∀𝑥(𝐹𝑉𝑥𝐹) → ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V → V ∈ V))
101, 9mtoi 665 1 (∀𝑥(𝐹𝑉𝑥𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1362   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wral 2472  wrex 2473  Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-sn 3624  df-uni 3836  df-iun 3914
This theorem is referenced by:  pwnex  4480
  Copyright terms: Public domain W3C validator