| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abnex | GIF version | ||
| Description: Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 4484 and pwnex 4485. See the comment of abnexg 4482. (Contributed by BJ, 2-May-2021.) |
| Ref | Expression |
|---|---|
| abnex | ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 4166 | . 2 ⊢ ¬ V ∈ V | |
| 2 | alral 2542 | . . 3 ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ∀𝑥 ∈ V (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹)) | |
| 3 | rexv 2781 | . . . . . . 7 ⊢ (∃𝑥 ∈ V 𝑦 = 𝐹 ↔ ∃𝑥 𝑦 = 𝐹) | |
| 4 | 3 | bicomi 132 | . . . . . 6 ⊢ (∃𝑥 𝑦 = 𝐹 ↔ ∃𝑥 ∈ V 𝑦 = 𝐹) |
| 5 | 4 | abbii 2312 | . . . . 5 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} |
| 6 | 5 | eleq1i 2262 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V ↔ {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V) |
| 7 | 6 | biimpi 120 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V → {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V) |
| 8 | abnexg 4482 | . . 3 ⊢ (∀𝑥 ∈ V (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝐹} ∈ V → V ∈ V)) | |
| 9 | 2, 7, 8 | syl2im 38 | . 2 ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V → V ∈ V)) |
| 10 | 1, 9 | mtoi 665 | 1 ⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∃wrex 2476 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-sn 3629 df-uni 3841 df-iun 3919 |
| This theorem is referenced by: pwnex 4485 |
| Copyright terms: Public domain | W3C validator |