ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexex GIF version

Theorem rexex 2576
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
rexex (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)

Proof of Theorem rexex
StepHypRef Expression
1 df-rex 2514 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 simpr 110 . . 3 ((𝑥𝐴𝜑) → 𝜑)
32eximi 1646 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥𝜑)
41, 3sylbi 121 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1538  wcel 2200  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-rex 2514
This theorem is referenced by:  reu3  2993  rmo2i  3120  dffo5  5777  halfnq  7586  nsmallnq  7588  0npr  7658  genpml  7692  genpmu  7693  ltexprlemm  7775  ltexprlemloc  7782  dedekindeulemlub  15279  dedekindicclemlub  15288
  Copyright terms: Public domain W3C validator