ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexex GIF version

Theorem rexex 2540
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
rexex (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)

Proof of Theorem rexex
StepHypRef Expression
1 df-rex 2478 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 simpr 110 . . 3 ((𝑥𝐴𝜑) → 𝜑)
32eximi 1611 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥𝜑)
41, 3sylbi 121 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1503  wcel 2164  wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-rex 2478
This theorem is referenced by:  reu3  2951  rmo2i  3077  dffo5  5708  halfnq  7473  nsmallnq  7475  0npr  7545  genpml  7579  genpmu  7580  ltexprlemm  7662  ltexprlemloc  7669  dedekindeulemlub  14799  dedekindicclemlub  14808
  Copyright terms: Public domain W3C validator