ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexex GIF version

Theorem rexex 2543
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
rexex (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)

Proof of Theorem rexex
StepHypRef Expression
1 df-rex 2481 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 simpr 110 . . 3 ((𝑥𝐴𝜑) → 𝜑)
32eximi 1614 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥𝜑)
41, 3sylbi 121 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1506  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-rex 2481
This theorem is referenced by:  reu3  2954  rmo2i  3080  dffo5  5711  halfnq  7478  nsmallnq  7480  0npr  7550  genpml  7584  genpmu  7585  ltexprlemm  7667  ltexprlemloc  7674  dedekindeulemlub  14856  dedekindicclemlub  14865
  Copyright terms: Public domain W3C validator