![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexex | GIF version |
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
rexex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2365 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | simpr 108 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜑) | |
3 | 2 | eximi 1536 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜑) |
4 | 1, 3 | sylbi 119 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∃wex 1426 ∈ wcel 1438 ∃wrex 2360 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-rex 2365 |
This theorem is referenced by: reu3 2805 rmo2i 2929 dffo5 5448 halfnq 6968 nsmallnq 6970 0npr 7040 genpml 7074 genpmu 7075 ltexprlemm 7157 ltexprlemloc 7164 |
Copyright terms: Public domain | W3C validator |