| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfveu | GIF version | ||
| Description: A function has one value given an argument in its domain. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| funfveu | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2292 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹)) | |
| 2 | 1 | anbi2d 464 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹))) |
| 3 | breq1 4085 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
| 4 | 3 | eubidv 2085 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝐴𝐹𝑦)) |
| 5 | 2, 4 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝐴 → (((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃!𝑦 𝑥𝐹𝑦) ↔ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦))) |
| 6 | dffun8 5345 | . . . . 5 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∃!𝑦 𝑥𝐹𝑦)) | |
| 7 | 6 | simprbi 275 | . . . 4 ⊢ (Fun 𝐹 → ∀𝑥 ∈ dom 𝐹∃!𝑦 𝑥𝐹𝑦) |
| 8 | 7 | r19.21bi 2618 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃!𝑦 𝑥𝐹𝑦) |
| 9 | 5, 8 | vtoclg 2861 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦)) |
| 10 | 9 | anabsi7 581 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃!weu 2077 ∈ wcel 2200 ∀wral 2508 class class class wbr 4082 dom cdm 4718 Rel wrel 4723 Fun wfun 5311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4383 df-cnv 4726 df-co 4727 df-dm 4728 df-fun 5319 |
| This theorem is referenced by: funfvex 5643 |
| Copyright terms: Public domain | W3C validator |