![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funfveu | GIF version |
Description: A function has one value given an argument in its domain. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
funfveu | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2256 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹)) | |
2 | 1 | anbi2d 464 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹))) |
3 | breq1 4033 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
4 | 3 | eubidv 2050 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝐴𝐹𝑦)) |
5 | 2, 4 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝐴 → (((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃!𝑦 𝑥𝐹𝑦) ↔ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦))) |
6 | dffun8 5283 | . . . . 5 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∃!𝑦 𝑥𝐹𝑦)) | |
7 | 6 | simprbi 275 | . . . 4 ⊢ (Fun 𝐹 → ∀𝑥 ∈ dom 𝐹∃!𝑦 𝑥𝐹𝑦) |
8 | 7 | r19.21bi 2582 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃!𝑦 𝑥𝐹𝑦) |
9 | 5, 8 | vtoclg 2821 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦)) |
10 | 9 | anabsi7 581 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃!weu 2042 ∈ wcel 2164 ∀wral 2472 class class class wbr 4030 dom cdm 4660 Rel wrel 4665 Fun wfun 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-id 4325 df-cnv 4668 df-co 4669 df-dm 4670 df-fun 5257 |
This theorem is referenced by: funfvex 5572 |
Copyright terms: Public domain | W3C validator |