Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funfveu | GIF version |
Description: A function has one value given an argument in its domain. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
funfveu | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹)) | |
2 | 1 | anbi2d 460 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹))) |
3 | breq1 3985 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
4 | 3 | eubidv 2022 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝐴𝐹𝑦)) |
5 | 2, 4 | imbi12d 233 | . . 3 ⊢ (𝑥 = 𝐴 → (((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃!𝑦 𝑥𝐹𝑦) ↔ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦))) |
6 | dffun8 5216 | . . . . 5 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∃!𝑦 𝑥𝐹𝑦)) | |
7 | 6 | simprbi 273 | . . . 4 ⊢ (Fun 𝐹 → ∀𝑥 ∈ dom 𝐹∃!𝑦 𝑥𝐹𝑦) |
8 | 7 | r19.21bi 2554 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃!𝑦 𝑥𝐹𝑦) |
9 | 5, 8 | vtoclg 2786 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦)) |
10 | 9 | anabsi7 571 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∃!weu 2014 ∈ wcel 2136 ∀wral 2444 class class class wbr 3982 dom cdm 4604 Rel wrel 4609 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-cnv 4612 df-co 4613 df-dm 4614 df-fun 5190 |
This theorem is referenced by: funfvex 5503 |
Copyright terms: Public domain | W3C validator |