ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfveu GIF version

Theorem funfveu 5530
Description: A function has one value given an argument in its domain. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
funfveu ((Fun 𝐹𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem funfveu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2240 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹𝐴 ∈ dom 𝐹))
21anbi2d 464 . . . 4 (𝑥 = 𝐴 → ((Fun 𝐹𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹𝐴 ∈ dom 𝐹)))
3 breq1 4008 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
43eubidv 2034 . . . 4 (𝑥 = 𝐴 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝐴𝐹𝑦))
52, 4imbi12d 234 . . 3 (𝑥 = 𝐴 → (((Fun 𝐹𝑥 ∈ dom 𝐹) → ∃!𝑦 𝑥𝐹𝑦) ↔ ((Fun 𝐹𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦)))
6 dffun8 5246 . . . . 5 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∃!𝑦 𝑥𝐹𝑦))
76simprbi 275 . . . 4 (Fun 𝐹 → ∀𝑥 ∈ dom 𝐹∃!𝑦 𝑥𝐹𝑦)
87r19.21bi 2565 . . 3 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ∃!𝑦 𝑥𝐹𝑦)
95, 8vtoclg 2799 . 2 (𝐴 ∈ dom 𝐹 → ((Fun 𝐹𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦))
109anabsi7 581 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  ∃!weu 2026  wcel 2148  wral 2455   class class class wbr 4005  dom cdm 4628  Rel wrel 4633  Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-cnv 4636  df-co 4637  df-dm 4638  df-fun 5220
This theorem is referenced by:  funfvex  5534
  Copyright terms: Public domain W3C validator