![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funfveu | GIF version |
Description: A function has one value given an argument in its domain. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
funfveu | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2151 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹)) | |
2 | 1 | anbi2d 453 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹))) |
3 | breq1 3854 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
4 | 3 | eubidv 1957 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝐴𝐹𝑦)) |
5 | 2, 4 | imbi12d 233 | . . 3 ⊢ (𝑥 = 𝐴 → (((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃!𝑦 𝑥𝐹𝑦) ↔ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦))) |
6 | dffun8 5056 | . . . . 5 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∃!𝑦 𝑥𝐹𝑦)) | |
7 | 6 | simprbi 270 | . . . 4 ⊢ (Fun 𝐹 → ∀𝑥 ∈ dom 𝐹∃!𝑦 𝑥𝐹𝑦) |
8 | 7 | r19.21bi 2462 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃!𝑦 𝑥𝐹𝑦) |
9 | 5, 8 | vtoclg 2680 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦)) |
10 | 9 | anabsi7 549 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1290 ∈ wcel 1439 ∃!weu 1949 ∀wral 2360 class class class wbr 3851 dom cdm 4452 Rel wrel 4457 Fun wfun 5022 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-br 3852 df-opab 3906 df-id 4129 df-cnv 4460 df-co 4461 df-dm 4462 df-fun 5030 |
This theorem is referenced by: funfvex 5335 |
Copyright terms: Public domain | W3C validator |