Proof of Theorem gcdmultiplez
| Step | Hyp | Ref
| Expression |
| 1 | | 0z 9337 |
. . . 4
⊢ 0 ∈
ℤ |
| 2 | | zdceq 9401 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) |
| 3 | 1, 2 | mpan2 425 |
. . 3
⊢ (𝑁 ∈ ℤ →
DECID 𝑁 =
0) |
| 4 | | exmiddc 837 |
. . 3
⊢
(DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
| 5 | | nncn 8998 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℂ) |
| 6 | | mul01 8415 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℂ → (𝑀 · 0) =
0) |
| 7 | 6 | oveq2d 5938 |
. . . . . . . 8
⊢ (𝑀 ∈ ℂ → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0)) |
| 8 | 5, 7 | syl 14 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0)) |
| 9 | 8 | adantr 276 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0)) |
| 10 | | nnnn0 9256 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
| 11 | | nn0gcdid0 12148 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ0
→ (𝑀 gcd 0) = 𝑀) |
| 12 | 10, 11 | syl 14 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → (𝑀 gcd 0) = 𝑀) |
| 13 | 12 | adantr 276 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 0) = 𝑀) |
| 14 | 9, 13 | eqtrd 2229 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 0)) = 𝑀) |
| 15 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0)) |
| 16 | 15 | oveq2d 5938 |
. . . . . 6
⊢ (𝑁 = 0 → (𝑀 gcd (𝑀 · 𝑁)) = (𝑀 gcd (𝑀 · 0))) |
| 17 | 16 | eqeq1d 2205 |
. . . . 5
⊢ (𝑁 = 0 → ((𝑀 gcd (𝑀 · 𝑁)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 0)) = 𝑀)) |
| 18 | 14, 17 | imbitrrid 156 |
. . . 4
⊢ (𝑁 = 0 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)) |
| 19 | | df-ne 2368 |
. . . . 5
⊢ (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0) |
| 20 | | zcn 9331 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 21 | | absmul 11234 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) →
(abs‘(𝑀 ·
𝑁)) = ((abs‘𝑀) · (abs‘𝑁))) |
| 22 | 5, 20, 21 | syl2an 289 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) →
(abs‘(𝑀 ·
𝑁)) = ((abs‘𝑀) · (abs‘𝑁))) |
| 23 | | nnre 8997 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
| 24 | 10 | nn0ge0d 9305 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ → 0 ≤
𝑀) |
| 25 | 23, 24 | absidd 11332 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ →
(abs‘𝑀) = 𝑀) |
| 26 | 25 | oveq1d 5937 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ →
((abs‘𝑀) ·
(abs‘𝑁)) = (𝑀 · (abs‘𝑁))) |
| 27 | 26 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) →
((abs‘𝑀) ·
(abs‘𝑁)) = (𝑀 · (abs‘𝑁))) |
| 28 | 22, 27 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) →
(abs‘(𝑀 ·
𝑁)) = (𝑀 · (abs‘𝑁))) |
| 29 | 28 | oveq2d 5938 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · (abs‘𝑁)))) |
| 30 | 29 | adantr 276 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · (abs‘𝑁)))) |
| 31 | | simpll 527 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝑀 ∈
ℕ) |
| 32 | 31 | nnzd 9447 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝑀 ∈
ℤ) |
| 33 | | nnz 9345 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
| 34 | | zmulcl 9379 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
| 35 | 33, 34 | sylan 283 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
| 36 | 35 | adantr 276 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 · 𝑁) ∈ ℤ) |
| 37 | | gcdabs2 12157 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · 𝑁))) |
| 38 | 32, 36, 37 | syl2anc 411 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · 𝑁))) |
| 39 | | nnabscl 11265 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
ℕ) |
| 40 | | gcdmultiple 12187 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧
(abs‘𝑁) ∈
ℕ) → (𝑀 gcd
(𝑀 ·
(abs‘𝑁))) = 𝑀) |
| 41 | 39, 40 | sylan2 286 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀) |
| 42 | 41 | anassrs 400 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀) |
| 43 | 30, 38, 42 | 3eqtr3d 2237 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) |
| 44 | 43 | expcom 116 |
. . . . 5
⊢ (𝑁 ≠ 0 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)) |
| 45 | 19, 44 | sylbir 135 |
. . . 4
⊢ (¬
𝑁 = 0 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)) |
| 46 | 18, 45 | jaoi 717 |
. . 3
⊢ ((𝑁 = 0 ∨ ¬ 𝑁 = 0) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)) |
| 47 | 3, 4, 46 | 3syl 17 |
. 2
⊢ (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)) |
| 48 | 47 | anabsi7 581 |
1
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) |