ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdmultiplez GIF version

Theorem gcdmultiplez 12188
Description: Extend gcdmultiple 12187 so 𝑁 can be an integer. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcdmultiplez ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)

Proof of Theorem gcdmultiplez
StepHypRef Expression
1 0z 9337 . . . 4 0 ∈ ℤ
2 zdceq 9401 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
31, 2mpan2 425 . . 3 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
4 exmiddc 837 . . 3 (DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
5 nncn 8998 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
6 mul01 8415 . . . . . . . . 9 (𝑀 ∈ ℂ → (𝑀 · 0) = 0)
76oveq2d 5938 . . . . . . . 8 (𝑀 ∈ ℂ → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0))
85, 7syl 14 . . . . . . 7 (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0))
98adantr 276 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0))
10 nnnn0 9256 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
11 nn0gcdid0 12148 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 gcd 0) = 𝑀)
1210, 11syl 14 . . . . . . 7 (𝑀 ∈ ℕ → (𝑀 gcd 0) = 𝑀)
1312adantr 276 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 0) = 𝑀)
149, 13eqtrd 2229 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 0)) = 𝑀)
15 oveq2 5930 . . . . . . 7 (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0))
1615oveq2d 5938 . . . . . 6 (𝑁 = 0 → (𝑀 gcd (𝑀 · 𝑁)) = (𝑀 gcd (𝑀 · 0)))
1716eqeq1d 2205 . . . . 5 (𝑁 = 0 → ((𝑀 gcd (𝑀 · 𝑁)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 0)) = 𝑀))
1814, 17imbitrrid 156 . . . 4 (𝑁 = 0 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
19 df-ne 2368 . . . . 5 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
20 zcn 9331 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
21 absmul 11234 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
225, 20, 21syl2an 289 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
23 nnre 8997 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
2410nn0ge0d 9305 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 0 ≤ 𝑀)
2523, 24absidd 11332 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (abs‘𝑀) = 𝑀)
2625oveq1d 5937 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((abs‘𝑀) · (abs‘𝑁)) = (𝑀 · (abs‘𝑁)))
2726adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · (abs‘𝑁)) = (𝑀 · (abs‘𝑁)))
2822, 27eqtrd 2229 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · 𝑁)) = (𝑀 · (abs‘𝑁)))
2928oveq2d 5938 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · (abs‘𝑁))))
3029adantr 276 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · (abs‘𝑁))))
31 simpll 527 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝑀 ∈ ℕ)
3231nnzd 9447 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝑀 ∈ ℤ)
33 nnz 9345 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
34 zmulcl 9379 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
3533, 34sylan 283 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
3635adantr 276 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 · 𝑁) ∈ ℤ)
37 gcdabs2 12157 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · 𝑁)))
3832, 36, 37syl2anc 411 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · 𝑁)))
39 nnabscl 11265 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
40 gcdmultiple 12187 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀)
4139, 40sylan2 286 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀)
4241anassrs 400 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀)
4330, 38, 423eqtr3d 2237 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
4443expcom 116 . . . . 5 (𝑁 ≠ 0 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
4519, 44sylbir 135 . . . 4 𝑁 = 0 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
4618, 45jaoi 717 . . 3 ((𝑁 = 0 ∨ ¬ 𝑁 = 0) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
473, 4, 463syl 17 . 2 (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
4847anabsi7 581 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879   · cmul 7884  cn 8990  0cn0 9249  cz 9326  abscabs 11162   gcd cgcd 12120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator