ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdmultiplez GIF version

Theorem gcdmultiplez 12014
Description: Extend gcdmultiple 12013 so 𝑁 can be an integer. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcdmultiplez ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)

Proof of Theorem gcdmultiplez
StepHypRef Expression
1 0z 9260 . . . 4 0 ∈ ℤ
2 zdceq 9324 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
31, 2mpan2 425 . . 3 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
4 exmiddc 836 . . 3 (DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
5 nncn 8923 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
6 mul01 8342 . . . . . . . . 9 (𝑀 ∈ ℂ → (𝑀 · 0) = 0)
76oveq2d 5888 . . . . . . . 8 (𝑀 ∈ ℂ → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0))
85, 7syl 14 . . . . . . 7 (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0))
98adantr 276 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0))
10 nnnn0 9179 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
11 nn0gcdid0 11974 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 gcd 0) = 𝑀)
1210, 11syl 14 . . . . . . 7 (𝑀 ∈ ℕ → (𝑀 gcd 0) = 𝑀)
1312adantr 276 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 0) = 𝑀)
149, 13eqtrd 2210 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 0)) = 𝑀)
15 oveq2 5880 . . . . . . 7 (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0))
1615oveq2d 5888 . . . . . 6 (𝑁 = 0 → (𝑀 gcd (𝑀 · 𝑁)) = (𝑀 gcd (𝑀 · 0)))
1716eqeq1d 2186 . . . . 5 (𝑁 = 0 → ((𝑀 gcd (𝑀 · 𝑁)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 0)) = 𝑀))
1814, 17imbitrrid 156 . . . 4 (𝑁 = 0 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
19 df-ne 2348 . . . . 5 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
20 zcn 9254 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
21 absmul 11071 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
225, 20, 21syl2an 289 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
23 nnre 8922 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
2410nn0ge0d 9228 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 0 ≤ 𝑀)
2523, 24absidd 11169 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (abs‘𝑀) = 𝑀)
2625oveq1d 5887 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((abs‘𝑀) · (abs‘𝑁)) = (𝑀 · (abs‘𝑁)))
2726adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · (abs‘𝑁)) = (𝑀 · (abs‘𝑁)))
2822, 27eqtrd 2210 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · 𝑁)) = (𝑀 · (abs‘𝑁)))
2928oveq2d 5888 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · (abs‘𝑁))))
3029adantr 276 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · (abs‘𝑁))))
31 simpll 527 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝑀 ∈ ℕ)
3231nnzd 9370 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝑀 ∈ ℤ)
33 nnz 9268 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
34 zmulcl 9302 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
3533, 34sylan 283 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
3635adantr 276 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 · 𝑁) ∈ ℤ)
37 gcdabs2 11983 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · 𝑁)))
3832, 36, 37syl2anc 411 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · 𝑁)))
39 nnabscl 11102 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
40 gcdmultiple 12013 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀)
4139, 40sylan2 286 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀)
4241anassrs 400 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀)
4330, 38, 423eqtr3d 2218 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
4443expcom 116 . . . . 5 (𝑁 ≠ 0 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
4519, 44sylbir 135 . . . 4 𝑁 = 0 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
4618, 45jaoi 716 . . 3 ((𝑁 = 0 ∨ ¬ 𝑁 = 0) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
473, 4, 463syl 17 . 2 (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
4847anabsi7 581 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  cfv 5215  (class class class)co 5872  cc 7806  0cc0 7808   · cmul 7813  cn 8915  0cn0 9172  cz 9249  abscabs 10999   gcd cgcd 11935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-mulrcl 7907  ax-addcom 7908  ax-mulcom 7909  ax-addass 7910  ax-mulass 7911  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-1rid 7915  ax-0id 7916  ax-rnegex 7917  ax-precex 7918  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-apti 7923  ax-pre-ltadd 7924  ax-pre-mulgt0 7925  ax-pre-mulext 7926  ax-arch 7927  ax-caucvg 7928
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-id 4292  df-po 4295  df-iso 4296  df-iord 4365  df-on 4367  df-ilim 4368  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-recs 6303  df-frec 6389  df-sup 6980  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-reap 8528  df-ap 8535  df-div 8626  df-inn 8916  df-2 8974  df-3 8975  df-4 8976  df-n0 9173  df-z 9250  df-uz 9525  df-q 9616  df-rp 9650  df-fz 10005  df-fzo 10138  df-fl 10265  df-mod 10318  df-seqfrec 10441  df-exp 10515  df-cj 10844  df-re 10845  df-im 10846  df-rsqrt 11000  df-abs 11001  df-dvds 11788  df-gcd 11936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator