Proof of Theorem gcdmultiplez
Step | Hyp | Ref
| Expression |
1 | | 0z 9253 |
. . . 4
⊢ 0 ∈
ℤ |
2 | | zdceq 9317 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) |
3 | 1, 2 | mpan2 425 |
. . 3
⊢ (𝑁 ∈ ℤ →
DECID 𝑁 =
0) |
4 | | exmiddc 836 |
. . 3
⊢
(DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
5 | | nncn 8916 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℂ) |
6 | | mul01 8336 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℂ → (𝑀 · 0) =
0) |
7 | 6 | oveq2d 5885 |
. . . . . . . 8
⊢ (𝑀 ∈ ℂ → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0)) |
8 | 5, 7 | syl 14 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0)) |
9 | 8 | adantr 276 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 0)) = (𝑀 gcd 0)) |
10 | | nnnn0 9172 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
11 | | nn0gcdid0 11965 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ0
→ (𝑀 gcd 0) = 𝑀) |
12 | 10, 11 | syl 14 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → (𝑀 gcd 0) = 𝑀) |
13 | 12 | adantr 276 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 0) = 𝑀) |
14 | 9, 13 | eqtrd 2210 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 0)) = 𝑀) |
15 | | oveq2 5877 |
. . . . . . 7
⊢ (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0)) |
16 | 15 | oveq2d 5885 |
. . . . . 6
⊢ (𝑁 = 0 → (𝑀 gcd (𝑀 · 𝑁)) = (𝑀 gcd (𝑀 · 0))) |
17 | 16 | eqeq1d 2186 |
. . . . 5
⊢ (𝑁 = 0 → ((𝑀 gcd (𝑀 · 𝑁)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 0)) = 𝑀)) |
18 | 14, 17 | syl5ibr 156 |
. . . 4
⊢ (𝑁 = 0 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)) |
19 | | df-ne 2348 |
. . . . 5
⊢ (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0) |
20 | | zcn 9247 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
21 | | absmul 11062 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) →
(abs‘(𝑀 ·
𝑁)) = ((abs‘𝑀) · (abs‘𝑁))) |
22 | 5, 20, 21 | syl2an 289 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) →
(abs‘(𝑀 ·
𝑁)) = ((abs‘𝑀) · (abs‘𝑁))) |
23 | | nnre 8915 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
24 | 10 | nn0ge0d 9221 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ → 0 ≤
𝑀) |
25 | 23, 24 | absidd 11160 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ →
(abs‘𝑀) = 𝑀) |
26 | 25 | oveq1d 5884 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ →
((abs‘𝑀) ·
(abs‘𝑁)) = (𝑀 · (abs‘𝑁))) |
27 | 26 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) →
((abs‘𝑀) ·
(abs‘𝑁)) = (𝑀 · (abs‘𝑁))) |
28 | 22, 27 | eqtrd 2210 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) →
(abs‘(𝑀 ·
𝑁)) = (𝑀 · (abs‘𝑁))) |
29 | 28 | oveq2d 5885 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · (abs‘𝑁)))) |
30 | 29 | adantr 276 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · (abs‘𝑁)))) |
31 | | simpll 527 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝑀 ∈
ℕ) |
32 | 31 | nnzd 9363 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝑀 ∈
ℤ) |
33 | | nnz 9261 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
34 | | zmulcl 9295 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
35 | 33, 34 | sylan 283 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
36 | 35 | adantr 276 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 · 𝑁) ∈ ℤ) |
37 | | gcdabs2 11974 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · 𝑁))) |
38 | 32, 36, 37 | syl2anc 411 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (abs‘(𝑀 · 𝑁))) = (𝑀 gcd (𝑀 · 𝑁))) |
39 | | nnabscl 11093 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
ℕ) |
40 | | gcdmultiple 12004 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧
(abs‘𝑁) ∈
ℕ) → (𝑀 gcd
(𝑀 ·
(abs‘𝑁))) = 𝑀) |
41 | 39, 40 | sylan2 286 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀) |
42 | 41 | anassrs 400 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (𝑀 · (abs‘𝑁))) = 𝑀) |
43 | 30, 38, 42 | 3eqtr3d 2218 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) |
44 | 43 | expcom 116 |
. . . . 5
⊢ (𝑁 ≠ 0 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)) |
45 | 19, 44 | sylbir 135 |
. . . 4
⊢ (¬
𝑁 = 0 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)) |
46 | 18, 45 | jaoi 716 |
. . 3
⊢ ((𝑁 = 0 ∨ ¬ 𝑁 = 0) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)) |
47 | 3, 4, 46 | 3syl 17 |
. 2
⊢ (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)) |
48 | 47 | anabsi7 581 |
1
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) |