ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdisj GIF version

Theorem prdisj 7576
Description: A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
prdisj ((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈))

Proof of Theorem prdisj
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2259 . . . . 5 (𝑞 = 𝐴 → (𝑞Q𝐴Q))
21anbi2d 464 . . . 4 (𝑞 = 𝐴 → ((⟨𝐿, 𝑈⟩ ∈ P𝑞Q) ↔ (⟨𝐿, 𝑈⟩ ∈ P𝐴Q)))
3 eleq1 2259 . . . . . 6 (𝑞 = 𝐴 → (𝑞𝐿𝐴𝐿))
4 eleq1 2259 . . . . . 6 (𝑞 = 𝐴 → (𝑞𝑈𝐴𝑈))
53, 4anbi12d 473 . . . . 5 (𝑞 = 𝐴 → ((𝑞𝐿𝑞𝑈) ↔ (𝐴𝐿𝐴𝑈)))
65notbid 668 . . . 4 (𝑞 = 𝐴 → (¬ (𝑞𝐿𝑞𝑈) ↔ ¬ (𝐴𝐿𝐴𝑈)))
72, 6imbi12d 234 . . 3 (𝑞 = 𝐴 → (((⟨𝐿, 𝑈⟩ ∈ P𝑞Q) → ¬ (𝑞𝐿𝑞𝑈)) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈))))
8 elinp 7558 . . . . 5 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
9 simpr2 1006 . . . . 5 ((((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))) → ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈))
108, 9sylbi 121 . . . 4 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈))
1110r19.21bi 2585 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝑞Q) → ¬ (𝑞𝐿𝑞𝑈))
127, 11vtoclg 2824 . 2 (𝐴Q → ((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈)))
1312anabsi7 581 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476  wss 3157  cop 3626   class class class wbr 4034  Qcnq 7364   <Q cltq 7369  Pcnp 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-qs 6607  df-ni 7388  df-nqqs 7432  df-inp 7550
This theorem is referenced by:  ltpopr  7679  addcanprleml  7698  addcanprlemu  7699  suplocexprlemdisj  7804  suplocexprlemub  7807
  Copyright terms: Public domain W3C validator