| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdisj | GIF version | ||
| Description: A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| prdisj | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 | . . . . 5 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ Q ↔ 𝐴 ∈ Q)) | |
| 2 | 1 | anbi2d 464 | . . . 4 ⊢ (𝑞 = 𝐴 → ((〈𝐿, 𝑈〉 ∈ P ∧ 𝑞 ∈ Q) ↔ (〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q))) |
| 3 | eleq1 2259 | . . . . . 6 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ 𝐿 ↔ 𝐴 ∈ 𝐿)) | |
| 4 | eleq1 2259 | . . . . . 6 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈)) | |
| 5 | 3, 4 | anbi12d 473 | . . . . 5 ⊢ (𝑞 = 𝐴 → ((𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈))) |
| 6 | 5 | notbid 668 | . . . 4 ⊢ (𝑞 = 𝐴 → (¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈))) |
| 7 | 2, 6 | imbi12d 234 | . . 3 ⊢ (𝑞 = 𝐴 → (((〈𝐿, 𝑈〉 ∈ P ∧ 𝑞 ∈ Q) → ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) ↔ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈)))) |
| 8 | elinp 7558 | . . . . 5 ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))))) | |
| 9 | simpr2 1006 | . . . . 5 ⊢ ((((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) | |
| 10 | 8, 9 | sylbi 121 | . . . 4 ⊢ (〈𝐿, 𝑈〉 ∈ P → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
| 11 | 10 | r19.21bi 2585 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝑞 ∈ Q) → ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
| 12 | 7, 11 | vtoclg 2824 | . 2 ⊢ (𝐴 ∈ Q → ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈))) |
| 13 | 12 | anabsi7 581 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ⊆ wss 3157 〈cop 3626 class class class wbr 4034 Qcnq 7364 <Q cltq 7369 Pcnp 7375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-qs 6607 df-ni 7388 df-nqqs 7432 df-inp 7550 |
| This theorem is referenced by: ltpopr 7679 addcanprleml 7698 addcanprlemu 7699 suplocexprlemdisj 7804 suplocexprlemub 7807 |
| Copyright terms: Public domain | W3C validator |