ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdisj GIF version

Theorem prdisj 7552
Description: A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
prdisj ((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈))

Proof of Theorem prdisj
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2256 . . . . 5 (𝑞 = 𝐴 → (𝑞Q𝐴Q))
21anbi2d 464 . . . 4 (𝑞 = 𝐴 → ((⟨𝐿, 𝑈⟩ ∈ P𝑞Q) ↔ (⟨𝐿, 𝑈⟩ ∈ P𝐴Q)))
3 eleq1 2256 . . . . . 6 (𝑞 = 𝐴 → (𝑞𝐿𝐴𝐿))
4 eleq1 2256 . . . . . 6 (𝑞 = 𝐴 → (𝑞𝑈𝐴𝑈))
53, 4anbi12d 473 . . . . 5 (𝑞 = 𝐴 → ((𝑞𝐿𝑞𝑈) ↔ (𝐴𝐿𝐴𝑈)))
65notbid 668 . . . 4 (𝑞 = 𝐴 → (¬ (𝑞𝐿𝑞𝑈) ↔ ¬ (𝐴𝐿𝐴𝑈)))
72, 6imbi12d 234 . . 3 (𝑞 = 𝐴 → (((⟨𝐿, 𝑈⟩ ∈ P𝑞Q) → ¬ (𝑞𝐿𝑞𝑈)) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈))))
8 elinp 7534 . . . . 5 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
9 simpr2 1006 . . . . 5 ((((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))) → ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈))
108, 9sylbi 121 . . . 4 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈))
1110r19.21bi 2582 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝑞Q) → ¬ (𝑞𝐿𝑞𝑈))
127, 11vtoclg 2820 . 2 (𝐴Q → ((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈)))
1312anabsi7 581 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2164  wral 2472  wrex 2473  wss 3153  cop 3621   class class class wbr 4029  Qcnq 7340   <Q cltq 7345  Pcnp 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-qs 6593  df-ni 7364  df-nqqs 7408  df-inp 7526
This theorem is referenced by:  ltpopr  7655  addcanprleml  7674  addcanprlemu  7675  suplocexprlemdisj  7780  suplocexprlemub  7783
  Copyright terms: Public domain W3C validator