ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdisj GIF version

Theorem prdisj 7300
Description: A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
prdisj ((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈))

Proof of Theorem prdisj
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2202 . . . . 5 (𝑞 = 𝐴 → (𝑞Q𝐴Q))
21anbi2d 459 . . . 4 (𝑞 = 𝐴 → ((⟨𝐿, 𝑈⟩ ∈ P𝑞Q) ↔ (⟨𝐿, 𝑈⟩ ∈ P𝐴Q)))
3 eleq1 2202 . . . . . 6 (𝑞 = 𝐴 → (𝑞𝐿𝐴𝐿))
4 eleq1 2202 . . . . . 6 (𝑞 = 𝐴 → (𝑞𝑈𝐴𝑈))
53, 4anbi12d 464 . . . . 5 (𝑞 = 𝐴 → ((𝑞𝐿𝑞𝑈) ↔ (𝐴𝐿𝐴𝑈)))
65notbid 656 . . . 4 (𝑞 = 𝐴 → (¬ (𝑞𝐿𝑞𝑈) ↔ ¬ (𝐴𝐿𝐴𝑈)))
72, 6imbi12d 233 . . 3 (𝑞 = 𝐴 → (((⟨𝐿, 𝑈⟩ ∈ P𝑞Q) → ¬ (𝑞𝐿𝑞𝑈)) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈))))
8 elinp 7282 . . . . 5 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
9 simpr2 988 . . . . 5 ((((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))) → ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈))
108, 9sylbi 120 . . . 4 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈))
1110r19.21bi 2520 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝑞Q) → ¬ (𝑞𝐿𝑞𝑈))
127, 11vtoclg 2746 . 2 (𝐴Q → ((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈)))
1312anabsi7 570 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417  wss 3071  cop 3530   class class class wbr 3929  Qcnq 7088   <Q cltq 7093  Pcnp 7099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-qs 6435  df-ni 7112  df-nqqs 7156  df-inp 7274
This theorem is referenced by:  ltpopr  7403  addcanprleml  7422  addcanprlemu  7423  suplocexprlemdisj  7528  suplocexprlemub  7531
  Copyright terms: Public domain W3C validator