| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdisj | GIF version | ||
| Description: A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| prdisj | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2269 | . . . . 5 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ Q ↔ 𝐴 ∈ Q)) | |
| 2 | 1 | anbi2d 464 | . . . 4 ⊢ (𝑞 = 𝐴 → ((〈𝐿, 𝑈〉 ∈ P ∧ 𝑞 ∈ Q) ↔ (〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q))) |
| 3 | eleq1 2269 | . . . . . 6 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ 𝐿 ↔ 𝐴 ∈ 𝐿)) | |
| 4 | eleq1 2269 | . . . . . 6 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈)) | |
| 5 | 3, 4 | anbi12d 473 | . . . . 5 ⊢ (𝑞 = 𝐴 → ((𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈))) |
| 6 | 5 | notbid 669 | . . . 4 ⊢ (𝑞 = 𝐴 → (¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈))) |
| 7 | 2, 6 | imbi12d 234 | . . 3 ⊢ (𝑞 = 𝐴 → (((〈𝐿, 𝑈〉 ∈ P ∧ 𝑞 ∈ Q) → ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) ↔ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈)))) |
| 8 | elinp 7607 | . . . . 5 ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))))) | |
| 9 | simpr2 1007 | . . . . 5 ⊢ ((((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) | |
| 10 | 8, 9 | sylbi 121 | . . . 4 ⊢ (〈𝐿, 𝑈〉 ∈ P → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
| 11 | 10 | r19.21bi 2595 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝑞 ∈ Q) → ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
| 12 | 7, 11 | vtoclg 2835 | . 2 ⊢ (𝐴 ∈ Q → ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈))) |
| 13 | 12 | anabsi7 581 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ⊆ wss 3170 〈cop 3641 class class class wbr 4051 Qcnq 7413 <Q cltq 7418 Pcnp 7424 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-qs 6639 df-ni 7437 df-nqqs 7481 df-inp 7599 |
| This theorem is referenced by: ltpopr 7728 addcanprleml 7747 addcanprlemu 7748 suplocexprlemdisj 7853 suplocexprlemub 7856 |
| Copyright terms: Public domain | W3C validator |