| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordelord | GIF version | ||
| Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordelord | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 2 | 1 | anbi2d 464 | . . . 4 ⊢ (𝑥 = 𝐵 → ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ (Ord 𝐴 ∧ 𝐵 ∈ 𝐴))) |
| 3 | ordeq 4407 | . . . 4 ⊢ (𝑥 = 𝐵 → (Ord 𝑥 ↔ Ord 𝐵)) | |
| 4 | 2, 3 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝐵 → (((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) ↔ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵))) |
| 5 | dford3 4402 | . . . . . 6 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
| 6 | 5 | simprbi 275 | . . . . 5 ⊢ (Ord 𝐴 → ∀𝑥 ∈ 𝐴 Tr 𝑥) |
| 7 | 6 | r19.21bi 2585 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Tr 𝑥) |
| 8 | ordelss 4414 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ 𝐴) | |
| 9 | simpl 109 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝐴) | |
| 10 | trssord 4415 | . . . 4 ⊢ ((Tr 𝑥 ∧ 𝑥 ⊆ 𝐴 ∧ Ord 𝐴) → Ord 𝑥) | |
| 11 | 7, 8, 9, 10 | syl3anc 1249 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) |
| 12 | 4, 11 | vtoclg 2824 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵)) |
| 13 | 12 | anabsi7 581 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 Tr wtr 4131 Ord word 4397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 df-tr 4132 df-iord 4401 |
| This theorem is referenced by: tron 4417 ordelon 4418 ordsucg 4538 ordwe 4612 smores 6350 |
| Copyright terms: Public domain | W3C validator |