![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordelord | GIF version |
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.) |
Ref | Expression |
---|---|
ordelord | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2252 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
2 | 1 | anbi2d 464 | . . . 4 ⊢ (𝑥 = 𝐵 → ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ (Ord 𝐴 ∧ 𝐵 ∈ 𝐴))) |
3 | ordeq 4390 | . . . 4 ⊢ (𝑥 = 𝐵 → (Ord 𝑥 ↔ Ord 𝐵)) | |
4 | 2, 3 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝐵 → (((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) ↔ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵))) |
5 | dford3 4385 | . . . . . 6 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 Tr 𝑥)) | |
6 | 5 | simprbi 275 | . . . . 5 ⊢ (Ord 𝐴 → ∀𝑥 ∈ 𝐴 Tr 𝑥) |
7 | 6 | r19.21bi 2578 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Tr 𝑥) |
8 | ordelss 4397 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ 𝐴) | |
9 | simpl 109 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝐴) | |
10 | trssord 4398 | . . . 4 ⊢ ((Tr 𝑥 ∧ 𝑥 ⊆ 𝐴 ∧ Ord 𝐴) → Ord 𝑥) | |
11 | 7, 8, 9, 10 | syl3anc 1249 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) |
12 | 4, 11 | vtoclg 2812 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵)) |
13 | 12 | anabsi7 581 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ⊆ wss 3144 Tr wtr 4116 Ord word 4380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-in 3150 df-ss 3157 df-uni 3825 df-tr 4117 df-iord 4384 |
This theorem is referenced by: tron 4400 ordelon 4401 ordsucg 4519 ordwe 4593 smores 6316 |
Copyright terms: Public domain | W3C validator |