![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvelrn | GIF version |
Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.) |
Ref | Expression |
---|---|
fvelrn | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2240 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹)) | |
2 | 1 | anbi2d 464 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹))) |
3 | fveq2 5517 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
4 | 3 | eleq1d 2246 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ran 𝐹 ↔ (𝐹‘𝐴) ∈ ran 𝐹)) |
5 | 2, 4 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝐴 → (((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) ↔ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹))) |
6 | funfvop 5630 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹‘𝑥)⟩ ∈ 𝐹) | |
7 | vex 2742 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | opeq1 3780 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ⟨𝑦, (𝐹‘𝑥)⟩ = ⟨𝑥, (𝐹‘𝑥)⟩) | |
9 | 8 | eleq1d 2246 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (⟨𝑦, (𝐹‘𝑥)⟩ ∈ 𝐹 ↔ ⟨𝑥, (𝐹‘𝑥)⟩ ∈ 𝐹)) |
10 | 7, 9 | spcev 2834 | . . . . 5 ⊢ (⟨𝑥, (𝐹‘𝑥)⟩ ∈ 𝐹 → ∃𝑦⟨𝑦, (𝐹‘𝑥)⟩ ∈ 𝐹) |
11 | 6, 10 | syl 14 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ∃𝑦⟨𝑦, (𝐹‘𝑥)⟩ ∈ 𝐹) |
12 | funfvex 5534 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
13 | elrn2g 4819 | . . . . 5 ⊢ ((𝐹‘𝑥) ∈ V → ((𝐹‘𝑥) ∈ ran 𝐹 ↔ ∃𝑦⟨𝑦, (𝐹‘𝑥)⟩ ∈ 𝐹)) | |
14 | 12, 13 | syl 14 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) ∈ ran 𝐹 ↔ ∃𝑦⟨𝑦, (𝐹‘𝑥)⟩ ∈ 𝐹)) |
15 | 11, 14 | mpbird 167 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
16 | 5, 15 | vtoclg 2799 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹)) |
17 | 16 | anabsi7 581 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 dom cdm 4628 ran crn 4629 Fun wfun 5212 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 |
This theorem is referenced by: fnfvelrn 5650 eldmrexrn 5659 funfvima 5750 elunirn 5769 frecuzrdgdomlem 10419 frecuzrdgsuctlem 10425 |
Copyright terms: Public domain | W3C validator |