ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucuni2 GIF version

Theorem onsucuni2 4548
Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onsucuni2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)

Proof of Theorem onsucuni2
StepHypRef Expression
1 eleq1 2233 . . . . . 6 (𝐴 = suc 𝐵 → (𝐴 ∈ On ↔ suc 𝐵 ∈ On))
21biimpac 296 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐵 ∈ On)
3 sucelon 4487 . . . . . . 7 (𝐵 ∈ On ↔ suc 𝐵 ∈ On)
4 eloni 4360 . . . . . . . . . 10 (𝐵 ∈ On → Ord 𝐵)
5 ordtr 4363 . . . . . . . . . 10 (Ord 𝐵 → Tr 𝐵)
64, 5syl 14 . . . . . . . . 9 (𝐵 ∈ On → Tr 𝐵)
7 unisucg 4399 . . . . . . . . 9 (𝐵 ∈ On → (Tr 𝐵 suc 𝐵 = 𝐵))
86, 7mpbid 146 . . . . . . . 8 (𝐵 ∈ On → suc 𝐵 = 𝐵)
9 suceq 4387 . . . . . . . 8 ( suc 𝐵 = 𝐵 → suc suc 𝐵 = suc 𝐵)
108, 9syl 14 . . . . . . 7 (𝐵 ∈ On → suc suc 𝐵 = suc 𝐵)
113, 10sylbir 134 . . . . . 6 (suc 𝐵 ∈ On → suc suc 𝐵 = suc 𝐵)
12 eloni 4360 . . . . . . . 8 (suc 𝐵 ∈ On → Ord suc 𝐵)
13 ordtr 4363 . . . . . . . 8 (Ord suc 𝐵 → Tr suc 𝐵)
1412, 13syl 14 . . . . . . 7 (suc 𝐵 ∈ On → Tr suc 𝐵)
15 unisucg 4399 . . . . . . 7 (suc 𝐵 ∈ On → (Tr suc 𝐵 suc suc 𝐵 = suc 𝐵))
1614, 15mpbid 146 . . . . . 6 (suc 𝐵 ∈ On → suc suc 𝐵 = suc 𝐵)
1711, 16eqtr4d 2206 . . . . 5 (suc 𝐵 ∈ On → suc suc 𝐵 = suc suc 𝐵)
182, 17syl 14 . . . 4 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc suc 𝐵 = suc suc 𝐵)
19 unieq 3805 . . . . . 6 (𝐴 = suc 𝐵 𝐴 = suc 𝐵)
20 suceq 4387 . . . . . 6 ( 𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
2119, 20syl 14 . . . . 5 (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
22 suceq 4387 . . . . . 6 (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
2322unieqd 3807 . . . . 5 (𝐴 = suc 𝐵 suc 𝐴 = suc suc 𝐵)
2421, 23eqeq12d 2185 . . . 4 (𝐴 = suc 𝐵 → (suc 𝐴 = suc 𝐴 ↔ suc suc 𝐵 = suc suc 𝐵))
2518, 24syl5ibr 155 . . 3 (𝐴 = suc 𝐵 → ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = suc 𝐴))
2625anabsi7 576 . 2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = suc 𝐴)
27 eloni 4360 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
28 ordtr 4363 . . . . 5 (Ord 𝐴 → Tr 𝐴)
2927, 28syl 14 . . . 4 (𝐴 ∈ On → Tr 𝐴)
30 unisucg 4399 . . . 4 (𝐴 ∈ On → (Tr 𝐴 suc 𝐴 = 𝐴))
3129, 30mpbid 146 . . 3 (𝐴 ∈ On → suc 𝐴 = 𝐴)
3231adantr 274 . 2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)
3326, 32eqtrd 2203 1 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141   cuni 3796  Tr wtr 4087  Ord word 4347  Oncon0 4348  suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356
This theorem is referenced by:  nnsucpred  4601  nnpredcl  4607
  Copyright terms: Public domain W3C validator