ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucuni2 GIF version

Theorem onsucuni2 4596
Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onsucuni2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)

Proof of Theorem onsucuni2
StepHypRef Expression
1 eleq1 2256 . . . . . 6 (𝐴 = suc 𝐵 → (𝐴 ∈ On ↔ suc 𝐵 ∈ On))
21biimpac 298 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐵 ∈ On)
3 onsucb 4535 . . . . . . 7 (𝐵 ∈ On ↔ suc 𝐵 ∈ On)
4 eloni 4406 . . . . . . . . . 10 (𝐵 ∈ On → Ord 𝐵)
5 ordtr 4409 . . . . . . . . . 10 (Ord 𝐵 → Tr 𝐵)
64, 5syl 14 . . . . . . . . 9 (𝐵 ∈ On → Tr 𝐵)
7 unisucg 4445 . . . . . . . . 9 (𝐵 ∈ On → (Tr 𝐵 suc 𝐵 = 𝐵))
86, 7mpbid 147 . . . . . . . 8 (𝐵 ∈ On → suc 𝐵 = 𝐵)
9 suceq 4433 . . . . . . . 8 ( suc 𝐵 = 𝐵 → suc suc 𝐵 = suc 𝐵)
108, 9syl 14 . . . . . . 7 (𝐵 ∈ On → suc suc 𝐵 = suc 𝐵)
113, 10sylbir 135 . . . . . 6 (suc 𝐵 ∈ On → suc suc 𝐵 = suc 𝐵)
12 eloni 4406 . . . . . . . 8 (suc 𝐵 ∈ On → Ord suc 𝐵)
13 ordtr 4409 . . . . . . . 8 (Ord suc 𝐵 → Tr suc 𝐵)
1412, 13syl 14 . . . . . . 7 (suc 𝐵 ∈ On → Tr suc 𝐵)
15 unisucg 4445 . . . . . . 7 (suc 𝐵 ∈ On → (Tr suc 𝐵 suc suc 𝐵 = suc 𝐵))
1614, 15mpbid 147 . . . . . 6 (suc 𝐵 ∈ On → suc suc 𝐵 = suc 𝐵)
1711, 16eqtr4d 2229 . . . . 5 (suc 𝐵 ∈ On → suc suc 𝐵 = suc suc 𝐵)
182, 17syl 14 . . . 4 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc suc 𝐵 = suc suc 𝐵)
19 unieq 3844 . . . . . 6 (𝐴 = suc 𝐵 𝐴 = suc 𝐵)
20 suceq 4433 . . . . . 6 ( 𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
2119, 20syl 14 . . . . 5 (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
22 suceq 4433 . . . . . 6 (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
2322unieqd 3846 . . . . 5 (𝐴 = suc 𝐵 suc 𝐴 = suc suc 𝐵)
2421, 23eqeq12d 2208 . . . 4 (𝐴 = suc 𝐵 → (suc 𝐴 = suc 𝐴 ↔ suc suc 𝐵 = suc suc 𝐵))
2518, 24imbitrrid 156 . . 3 (𝐴 = suc 𝐵 → ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = suc 𝐴))
2625anabsi7 581 . 2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = suc 𝐴)
27 eloni 4406 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
28 ordtr 4409 . . . . 5 (Ord 𝐴 → Tr 𝐴)
2927, 28syl 14 . . . 4 (𝐴 ∈ On → Tr 𝐴)
30 unisucg 4445 . . . 4 (𝐴 ∈ On → (Tr 𝐴 suc 𝐴 = 𝐴))
3129, 30mpbid 147 . . 3 (𝐴 ∈ On → suc 𝐴 = 𝐴)
3231adantr 276 . 2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)
3326, 32eqtrd 2226 1 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164   cuni 3835  Tr wtr 4127  Ord word 4393  Oncon0 4394  suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402
This theorem is referenced by:  nnsucpred  4649  nnpredcl  4655
  Copyright terms: Public domain W3C validator