Proof of Theorem onsucuni2
Step | Hyp | Ref
| Expression |
1 | | eleq1 2229 |
. . . . . 6
⊢ (𝐴 = suc 𝐵 → (𝐴 ∈ On ↔ suc 𝐵 ∈ On)) |
2 | 1 | biimpac 296 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐵 ∈ On) |
3 | | sucelon 4480 |
. . . . . . 7
⊢ (𝐵 ∈ On ↔ suc 𝐵 ∈ On) |
4 | | eloni 4353 |
. . . . . . . . . 10
⊢ (𝐵 ∈ On → Ord 𝐵) |
5 | | ordtr 4356 |
. . . . . . . . . 10
⊢ (Ord
𝐵 → Tr 𝐵) |
6 | 4, 5 | syl 14 |
. . . . . . . . 9
⊢ (𝐵 ∈ On → Tr 𝐵) |
7 | | unisucg 4392 |
. . . . . . . . 9
⊢ (𝐵 ∈ On → (Tr 𝐵 ↔ ∪ suc 𝐵 = 𝐵)) |
8 | 6, 7 | mpbid 146 |
. . . . . . . 8
⊢ (𝐵 ∈ On → ∪ suc 𝐵 = 𝐵) |
9 | | suceq 4380 |
. . . . . . . 8
⊢ (∪ suc 𝐵 = 𝐵 → suc ∪ suc
𝐵 = suc 𝐵) |
10 | 8, 9 | syl 14 |
. . . . . . 7
⊢ (𝐵 ∈ On → suc ∪ suc 𝐵 = suc 𝐵) |
11 | 3, 10 | sylbir 134 |
. . . . . 6
⊢ (suc
𝐵 ∈ On → suc
∪ suc 𝐵 = suc 𝐵) |
12 | | eloni 4353 |
. . . . . . . 8
⊢ (suc
𝐵 ∈ On → Ord suc
𝐵) |
13 | | ordtr 4356 |
. . . . . . . 8
⊢ (Ord suc
𝐵 → Tr suc 𝐵) |
14 | 12, 13 | syl 14 |
. . . . . . 7
⊢ (suc
𝐵 ∈ On → Tr suc
𝐵) |
15 | | unisucg 4392 |
. . . . . . 7
⊢ (suc
𝐵 ∈ On → (Tr suc
𝐵 ↔ ∪ suc suc 𝐵 = suc 𝐵)) |
16 | 14, 15 | mpbid 146 |
. . . . . 6
⊢ (suc
𝐵 ∈ On → ∪ suc suc 𝐵 = suc 𝐵) |
17 | 11, 16 | eqtr4d 2201 |
. . . . 5
⊢ (suc
𝐵 ∈ On → suc
∪ suc 𝐵 = ∪ suc suc
𝐵) |
18 | 2, 17 | syl 14 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪
suc 𝐵 = ∪ suc suc 𝐵) |
19 | | unieq 3798 |
. . . . . 6
⊢ (𝐴 = suc 𝐵 → ∪ 𝐴 = ∪
suc 𝐵) |
20 | | suceq 4380 |
. . . . . 6
⊢ (∪ 𝐴 =
∪ suc 𝐵 → suc ∪
𝐴 = suc ∪ suc 𝐵) |
21 | 19, 20 | syl 14 |
. . . . 5
⊢ (𝐴 = suc 𝐵 → suc ∪
𝐴 = suc ∪ suc 𝐵) |
22 | | suceq 4380 |
. . . . . 6
⊢ (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵) |
23 | 22 | unieqd 3800 |
. . . . 5
⊢ (𝐴 = suc 𝐵 → ∪ suc
𝐴 = ∪ suc suc 𝐵) |
24 | 21, 23 | eqeq12d 2180 |
. . . 4
⊢ (𝐴 = suc 𝐵 → (suc ∪
𝐴 = ∪ suc 𝐴 ↔ suc ∪ suc
𝐵 = ∪ suc suc 𝐵)) |
25 | 18, 24 | syl5ibr 155 |
. . 3
⊢ (𝐴 = suc 𝐵 → ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪
𝐴 = ∪ suc 𝐴)) |
26 | 25 | anabsi7 571 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪
𝐴 = ∪ suc 𝐴) |
27 | | eloni 4353 |
. . . . 5
⊢ (𝐴 ∈ On → Ord 𝐴) |
28 | | ordtr 4356 |
. . . . 5
⊢ (Ord
𝐴 → Tr 𝐴) |
29 | 27, 28 | syl 14 |
. . . 4
⊢ (𝐴 ∈ On → Tr 𝐴) |
30 | | unisucg 4392 |
. . . 4
⊢ (𝐴 ∈ On → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) |
31 | 29, 30 | mpbid 146 |
. . 3
⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
32 | 31 | adantr 274 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → ∪ suc
𝐴 = 𝐴) |
33 | 26, 32 | eqtrd 2198 |
1
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪
𝐴 = 𝐴) |