ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelrdva GIF version

Theorem nelrdva 2937
Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.)
Hypothesis
Ref Expression
nelrdva.1 ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
nelrdva (𝜑 → ¬ 𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem nelrdva
StepHypRef Expression
1 eqidd 2171 . 2 ((𝜑𝐵𝐴) → 𝐵 = 𝐵)
2 eleq1 2233 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
32anbi2d 461 . . . . . 6 (𝑥 = 𝐵 → ((𝜑𝑥𝐴) ↔ (𝜑𝐵𝐴)))
4 neeq1 2353 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝐵𝐵𝐵))
53, 4imbi12d 233 . . . . 5 (𝑥 = 𝐵 → (((𝜑𝑥𝐴) → 𝑥𝐵) ↔ ((𝜑𝐵𝐴) → 𝐵𝐵)))
6 nelrdva.1 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐵)
75, 6vtoclg 2790 . . . 4 (𝐵𝐴 → ((𝜑𝐵𝐴) → 𝐵𝐵))
87anabsi7 576 . . 3 ((𝜑𝐵𝐴) → 𝐵𝐵)
98neneqd 2361 . 2 ((𝜑𝐵𝐴) → ¬ 𝐵 = 𝐵)
101, 9pm2.65da 656 1 (𝜑 → ¬ 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wcel 2141  wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator