ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcan2 GIF version

Theorem dcan2 924
Description: A conjunction of two decidable propositions is decidable, expressed in a curried form as compared to dcan 923. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
dcan2 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))

Proof of Theorem dcan2
StepHypRef Expression
1 dcan 923 . 2 ((DECID 𝜑DECID 𝜓) → DECID (𝜑𝜓))
21ex 114 1 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by:  dcbi  926  annimdc  927  pm4.55dc  928  orandc  929  anordc  946  xordidc  1389  dcfi  6942  nn0n0n1ge2b  9266  gcdmndc  11873  gcdsupex  11886  gcdsupcl  11887  gcdaddm  11913  nnwosdc  11968  lcmval  11991  lcmcllem  11995  lcmledvds  11998  prmdc  12058  pclemdc  12216  pcmptdvds  12271  infpnlem2  12286  1arith  12293  ctiunctlemudc  12366  nninfdclemcl  12377  nninfdclemp1  12379  lgsval  13505  lgscllem  13508  lgsneg  13525  lgsdir  13536  lgsdi  13538  lgsne0  13539  nninfsellemdc  13850
  Copyright terms: Public domain W3C validator