ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcan2 GIF version

Theorem dcan2 934
Description: A conjunction of two decidable propositions is decidable, expressed in a curried form as compared to dcan 933. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
dcan2 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))

Proof of Theorem dcan2
StepHypRef Expression
1 dcan 933 . 2 ((DECID 𝜑DECID 𝜓) → DECID (𝜑𝜓))
21ex 115 1 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-dc 835
This theorem is referenced by:  dcbi  936  annimdc  937  pm4.55dc  938  orandc  939  anordc  956  xordidc  1399  dcfi  6982  nn0n0n1ge2b  9334  gcdmndc  11947  gcdsupex  11960  gcdsupcl  11961  gcdaddm  11987  nnwosdc  12042  lcmval  12065  lcmcllem  12069  lcmledvds  12072  prmdc  12132  pclemdc  12290  pcmptdvds  12345  infpnlem2  12360  1arith  12367  ctiunctlemudc  12440  nninfdclemcl  12451  nninfdclemp1  12453  lgsval  14490  lgscllem  14493  lgsneg  14510  lgsdir  14521  lgsdi  14523  lgsne0  14524  nninfsellemdc  14844
  Copyright terms: Public domain W3C validator