ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcan2 GIF version

Theorem dcan2 937
Description: A conjunction of two decidable propositions is decidable, expressed in a curried form as compared to dcan 936. This is deprecated; it's trivial to recreate with ex 115, but it's here in case someone is using this older form. (Contributed by Jim Kingdon, 12-Apr-2018.) (New usage is discouraged.)
Assertion
Ref Expression
dcan2 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))

Proof of Theorem dcan2
StepHypRef Expression
1 dcan 936 . 2 ((DECID 𝜑DECID 𝜓) → DECID (𝜑𝜓))
21ex 115 1 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117  df-dc 837
This theorem is referenced by:  pcmptdvds  12738  1arith  12760  ctiunctlemudc  12878  nninfdclemp1  12891  lgsval  15551  lgscllem  15554  lgsneg  15571  lgsdir  15582  lgsdi  15584  lgsne0  15585  nninfsellemdc  16082
  Copyright terms: Public domain W3C validator