Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcan2 | GIF version |
Description: A conjunction of two decidable propositions is decidable, expressed in a curried form as compared to dcan 923. (Contributed by Jim Kingdon, 12-Apr-2018.) |
Ref | Expression |
---|---|
dcan2 | ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcan 923 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ∧ 𝜓)) | |
2 | 1 | ex 114 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 |
This theorem is referenced by: dcbi 926 annimdc 927 pm4.55dc 928 orandc 929 anordc 946 xordidc 1389 dcfi 6942 nn0n0n1ge2b 9266 gcdmndc 11873 gcdsupex 11886 gcdsupcl 11887 gcdaddm 11913 nnwosdc 11968 lcmval 11991 lcmcllem 11995 lcmledvds 11998 prmdc 12058 pclemdc 12216 pcmptdvds 12271 infpnlem2 12286 1arith 12293 ctiunctlemudc 12366 nninfdclemcl 12377 nninfdclemp1 12379 lgsval 13505 lgscllem 13508 lgsneg 13525 lgsdir 13536 lgsdi 13538 lgsne0 13539 nninfsellemdc 13850 |
Copyright terms: Public domain | W3C validator |