ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcan2 GIF version

Theorem dcan2 940
Description: A conjunction of two decidable propositions is decidable, expressed in a curried form as compared to dcan 939. This is deprecated; it's trivial to recreate with ex 115, but it's here in case someone is using this older form. (Contributed by Jim Kingdon, 12-Apr-2018.) (New usage is discouraged.)
Assertion
Ref Expression
dcan2 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))

Proof of Theorem dcan2
StepHypRef Expression
1 dcan 939 . 2 ((DECID 𝜑DECID 𝜓) → DECID (𝜑𝜓))
21ex 115 1 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840
This theorem is referenced by:  pcmptdvds  12863  1arith  12885  ctiunctlemudc  13003  nninfdclemp1  13016  lgsval  15677  lgscllem  15680  lgsneg  15697  lgsdir  15708  lgsdi  15710  lgsne0  15711  nninfsellemdc  16335
  Copyright terms: Public domain W3C validator