Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcan2 | GIF version |
Description: A conjunction of two decidable propositions is decidable, expressed in a curried form as compared to dcan 933. (Contributed by Jim Kingdon, 12-Apr-2018.) |
Ref | Expression |
---|---|
dcan2 | ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcan 933 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ∧ 𝜓)) | |
2 | 1 | ex 115 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-dc 835 |
This theorem is referenced by: dcbi 936 annimdc 937 pm4.55dc 938 orandc 939 anordc 956 xordidc 1399 dcfi 6970 nn0n0n1ge2b 9305 gcdmndc 11912 gcdsupex 11925 gcdsupcl 11926 gcdaddm 11952 nnwosdc 12007 lcmval 12030 lcmcllem 12034 lcmledvds 12037 prmdc 12097 pclemdc 12255 pcmptdvds 12310 infpnlem2 12325 1arith 12332 ctiunctlemudc 12405 nninfdclemcl 12416 nninfdclemp1 12418 lgsval 13976 lgscllem 13979 lgsneg 13996 lgsdir 14007 lgsdi 14009 lgsne0 14010 nninfsellemdc 14320 |
Copyright terms: Public domain | W3C validator |