ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11o GIF version

Theorem ax11o 1822
Description: Derivation of set.mm's original ax-11o 1823 from the shorter ax-11 1506 that has replaced it.

An open problem is whether this theorem can be proved without relying on ax-16 1814 or ax-17 1526.

Normally, ax11o 1822 should be used rather than ax-11o 1823, except by theorems specifically studying the latter's properties. (Contributed by NM, 3-Feb-2007.)

Assertion
Ref Expression
ax11o (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))

Proof of Theorem ax11o
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-11 1506 . 2 (𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
21ax11a2 1821 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by:  ax11b  1826  equs5  1829
  Copyright terms: Public domain W3C validator