| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax11v | GIF version | ||
| Description: This is a version of ax-11o 1837 when the variables are distinct. Axiom (C8) of [Monk2] p. 105. (Contributed by NM, 5-Aug-1993.) (Revised by Jim Kingdon, 15-Dec-2017.) | 
| Ref | Expression | 
|---|---|
| ax11v | ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | a9e 1710 | . 2 ⊢ ∃𝑧 𝑧 = 𝑦 | |
| 2 | ax-17 1540 | . . . . 5 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 3 | ax-11 1520 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | |
| 4 | 2, 3 | syl5 32 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | 
| 5 | equequ2 1727 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | |
| 6 | 5 | imbi1d 231 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑))) | 
| 7 | 6 | albidv 1838 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 8 | 7 | imbi2d 230 | . . . . 5 ⊢ (𝑧 = 𝑦 → ((𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 9 | 5, 8 | imbi12d 234 | . . . 4 ⊢ (𝑧 = 𝑦 → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) ↔ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) | 
| 10 | 4, 9 | mpbii 148 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 11 | 10 | exlimiv 1612 | . 2 ⊢ (∃𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 12 | 1, 11 | ax-mp 5 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-17 1540 ax-i9 1544 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: equs5or 1844 sb56 1900 | 
| Copyright terms: Public domain | W3C validator |