ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equs5a GIF version

Theorem equs5a 1722
Description: A property related to substitution that unlike equs5 1757 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
Assertion
Ref Expression
equs5a (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem equs5a
StepHypRef Expression
1 hba1 1478 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥𝑥(𝑥 = 𝑦𝜑))
2 ax-11 1442 . . 3 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
32imp 122 . 2 ((𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
41, 3exlimih 1529 1 (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1287  wex 1426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-gen 1383  ax-ie2 1428  ax-11 1442  ax-ial 1472
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  equs5e  1723  sb4a  1729  equs45f  1730
  Copyright terms: Public domain W3C validator