![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equs5a | GIF version |
Description: A property related to substitution that unlike equs5 1757 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) |
Ref | Expression |
---|---|
equs5a | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1 1478 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | ax-11 1442 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
3 | 2 | imp 122 | . 2 ⊢ ((𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
4 | 1, 3 | exlimih 1529 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∀wal 1287 ∃wex 1426 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-gen 1383 ax-ie2 1428 ax-11 1442 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: equs5e 1723 sb4a 1729 equs45f 1730 |
Copyright terms: Public domain | W3C validator |