| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equs5a | GIF version | ||
| Description: A property related to substitution that unlike equs5 1843 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) |
| Ref | Expression |
|---|---|
| equs5a | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 1554 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 2 | ax-11 1520 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 3 | 2 | imp 124 | . 2 ⊢ ((𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 4 | 1, 3 | exlimih 1607 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-gen 1463 ax-ie2 1508 ax-11 1520 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equs5e 1809 sb4a 1815 equs45f 1816 |
| Copyright terms: Public domain | W3C validator |