ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb6 GIF version

Theorem sb6 1909
Description: Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
Assertion
Ref Expression
sb6 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb6
StepHypRef Expression
1 sb56 1908 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
21anbi2i 457 . 2 (((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ ((𝑥 = 𝑦𝜑) ∧ ∀𝑥(𝑥 = 𝑦𝜑)))
3 df-sb 1785 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
4 ax-4 1532 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
54pm4.71ri 392 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ((𝑥 = 𝑦𝜑) ∧ ∀𝑥(𝑥 = 𝑦𝜑)))
62, 3, 53bitr4i 212 1 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1370  wex 1514  [wsb 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-sb 1785
This theorem is referenced by:  sb5  1910  sbnv  1911  sbanv  1912  sbi1v  1914  sbi2v  1915  hbs1  1965  2sb6  2011  sbcom2v  2012  sb6a  2015  sb7af  2020  sbalyz  2026  sbal1yz  2028  exsb  2035  sbal2  2047  cbvabw  2327  nfabdw  2366  csbcow  3103
  Copyright terms: Public domain W3C validator