ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb6 GIF version

Theorem sb6 1933
Description: Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
Assertion
Ref Expression
sb6 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb6
StepHypRef Expression
1 sb56 1932 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
21anbi2i 457 . 2 (((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ ((𝑥 = 𝑦𝜑) ∧ ∀𝑥(𝑥 = 𝑦𝜑)))
3 df-sb 1809 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
4 ax-4 1556 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
54pm4.71ri 392 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ((𝑥 = 𝑦𝜑) ∧ ∀𝑥(𝑥 = 𝑦𝜑)))
62, 3, 53bitr4i 212 1 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393  wex 1538  [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-sb 1809
This theorem is referenced by:  sb5  1934  sbnv  1935  sbanv  1936  sbi1v  1938  sbi2v  1939  hbs1  1989  2sb6  2035  sbcom2v  2036  sb6a  2039  sb7af  2044  sbalyz  2050  sbal1yz  2052  exsb  2059  sbal2  2071  cbvabw  2352  nfabdw  2391  csbcow  3135
  Copyright terms: Public domain W3C validator