| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb6 | GIF version | ||
| Description: Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.) |
| Ref | Expression |
|---|---|
| sb6 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb56 1908 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 2 | 1 | anbi2i 457 | . 2 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 3 | df-sb 1785 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 4 | ax-4 1532 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
| 5 | 4 | pm4.71ri 392 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 6 | 2, 3, 5 | 3bitr4i 212 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1370 ∃wex 1514 [wsb 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 |
| This theorem is referenced by: sb5 1910 sbnv 1911 sbanv 1912 sbi1v 1914 sbi2v 1915 hbs1 1965 2sb6 2011 sbcom2v 2012 sb6a 2015 sb7af 2020 sbalyz 2026 sbal1yz 2028 exsb 2035 sbal2 2047 cbvabw 2327 nfabdw 2366 csbcow 3103 |
| Copyright terms: Public domain | W3C validator |