Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sb6 | GIF version |
Description: Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.) |
Ref | Expression |
---|---|
sb6 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb56 1873 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | 1 | anbi2i 453 | . 2 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
3 | df-sb 1751 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
4 | ax-4 1498 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
5 | 4 | pm4.71ri 390 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
6 | 2, 3, 5 | 3bitr4i 211 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 ∃wex 1480 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: sb5 1875 sbnv 1876 sbanv 1877 sbi1v 1879 sbi2v 1880 hbs1 1926 2sb6 1972 sbcom2v 1973 sb6a 1976 sb7af 1981 sbalyz 1987 sbal1yz 1989 exsb 1996 sbal2 2008 cbvabw 2289 nfabdw 2327 csbcow 3056 |
Copyright terms: Public domain | W3C validator |