| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb6 | GIF version | ||
| Description: Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.) |
| Ref | Expression |
|---|---|
| sb6 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb56 1909 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 2 | 1 | anbi2i 457 | . 2 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 3 | df-sb 1786 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 4 | ax-4 1533 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
| 5 | 4 | pm4.71ri 392 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 6 | 2, 3, 5 | 3bitr4i 212 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 ∃wex 1515 [wsb 1785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 |
| This theorem is referenced by: sb5 1911 sbnv 1912 sbanv 1913 sbi1v 1915 sbi2v 1916 hbs1 1966 2sb6 2012 sbcom2v 2013 sb6a 2016 sb7af 2021 sbalyz 2027 sbal1yz 2029 exsb 2036 sbal2 2048 cbvabw 2328 nfabdw 2367 csbcow 3104 |
| Copyright terms: Public domain | W3C validator |