ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb6 GIF version

Theorem sb6 1874
Description: Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
Assertion
Ref Expression
sb6 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb6
StepHypRef Expression
1 sb56 1873 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
21anbi2i 453 . 2 (((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ ((𝑥 = 𝑦𝜑) ∧ ∀𝑥(𝑥 = 𝑦𝜑)))
3 df-sb 1751 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
4 ax-4 1498 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
54pm4.71ri 390 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ((𝑥 = 𝑦𝜑) ∧ ∀𝑥(𝑥 = 𝑦𝜑)))
62, 3, 53bitr4i 211 1 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341  wex 1480  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  sb5  1875  sbnv  1876  sbanv  1877  sbi1v  1879  sbi2v  1880  hbs1  1926  2sb6  1972  sbcom2v  1973  sb6a  1976  sb7af  1981  sbalyz  1987  sbal1yz  1989  exsb  1996  sbal2  2008  cbvabw  2289  nfabdw  2327  csbcow  3056
  Copyright terms: Public domain W3C validator