Proof of Theorem ax11v2
| Step | Hyp | Ref
| Expression |
| 1 | | a9e 1710 |
. 2
⊢
∃𝑧 𝑧 = 𝑦 |
| 2 | | ax11v2.1 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| 3 | | equequ2 1727 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) |
| 4 | 3 | adantl 277 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) |
| 5 | | dveeq2 1829 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
| 6 | 5 | imp 124 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → ∀𝑥 𝑧 = 𝑦) |
| 7 | | hba1 1554 |
. . . . . . . . 9
⊢
(∀𝑥 𝑧 = 𝑦 → ∀𝑥∀𝑥 𝑧 = 𝑦) |
| 8 | 3 | imbi1d 231 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑))) |
| 9 | 8 | sps 1551 |
. . . . . . . . 9
⊢
(∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑))) |
| 10 | 7, 9 | albidh 1494 |
. . . . . . . 8
⊢
(∀𝑥 𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 11 | 6, 10 | syl 14 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → (∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 12 | 11 | imbi2d 230 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → ((𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| 13 | 4, 12 | imbi12d 234 |
. . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) ↔ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
| 14 | 2, 13 | mpbii 148 |
. . . 4
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| 15 | 14 | ex 115 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
| 16 | 15 | exlimdv 1833 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
| 17 | 1, 16 | mpi 15 |
1
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |