Proof of Theorem ax11v2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | a9e 1710 | 
. 2
⊢
∃𝑧 𝑧 = 𝑦 | 
| 2 |   | ax11v2.1 | 
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | 
| 3 |   | equequ2 1727 | 
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | 
| 4 | 3 | adantl 277 | 
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | 
| 5 |   | dveeq2 1829 | 
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | 
| 6 | 5 | imp 124 | 
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → ∀𝑥 𝑧 = 𝑦) | 
| 7 |   | hba1 1554 | 
. . . . . . . . 9
⊢
(∀𝑥 𝑧 = 𝑦 → ∀𝑥∀𝑥 𝑧 = 𝑦) | 
| 8 | 3 | imbi1d 231 | 
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑))) | 
| 9 | 8 | sps 1551 | 
. . . . . . . . 9
⊢
(∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑))) | 
| 10 | 7, 9 | albidh 1494 | 
. . . . . . . 8
⊢
(∀𝑥 𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 11 | 6, 10 | syl 14 | 
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → (∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 12 | 11 | imbi2d 230 | 
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → ((𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 13 | 4, 12 | imbi12d 234 | 
. . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) ↔ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) | 
| 14 | 2, 13 | mpbii 148 | 
. . . 4
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 15 | 14 | ex 115 | 
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) | 
| 16 | 15 | exlimdv 1833 | 
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) | 
| 17 | 1, 16 | mpi 15 | 
1
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |