ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax10o GIF version

Theorem ax10o 1708
Description: Show that ax-10o 1709 can be derived from ax-10 1498. An open problem is whether this theorem can be derived from ax-10 1498 and the others when ax-11 1499 is replaced with ax-11o 1816. See Theorem ax10 1710 for the rederivation of ax-10 1498 from ax10o 1708.

Normally, ax10o 1708 should be used rather than ax-10o 1709, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.)

Assertion
Ref Expression
ax10o (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))

Proof of Theorem ax10o
StepHypRef Expression
1 ax-10 1498 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
2 ax-11 1499 . . . 4 (𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥𝜑)))
32equcoms 1701 . . 3 (𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥𝜑)))
43sps 1530 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥𝜑)))
5 pm2.27 40 . . 3 (𝑦 = 𝑥 → ((𝑦 = 𝑥𝜑) → 𝜑))
65al2imi 1451 . 2 (∀𝑦 𝑦 = 𝑥 → (∀𝑦(𝑦 = 𝑥𝜑) → ∀𝑦𝜑))
71, 4, 6sylsyld 58 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-5 1440  ax-gen 1442  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  hbae  1711  dral1  1723
  Copyright terms: Public domain W3C validator