ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ddifstab GIF version

Theorem ddifstab 3291
Description: A class is equal to its double complement if and only if it is stable (that is, membership in it is a stable property). (Contributed by BJ, 12-Dec-2021.)
Assertion
Ref Expression
ddifstab ((V ∖ (V ∖ 𝐴)) = 𝐴 ↔ ∀𝑥STAB 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem ddifstab
StepHypRef Expression
1 dfcleq 2187 . 2 ((V ∖ (V ∖ 𝐴)) = 𝐴 ↔ ∀𝑥(𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ 𝑥𝐴))
2 eldif 3162 . . . . . . 7 (𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)))
3 vex 2763 . . . . . . . 8 𝑥 ∈ V
43biantrur 303 . . . . . . 7 𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴)))
5 eldif 3162 . . . . . . . . 9 (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐴))
63biantrur 303 . . . . . . . . 9 𝑥𝐴 ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐴))
75, 6bitr4i 187 . . . . . . . 8 (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)
87notbii 669 . . . . . . 7 𝑥 ∈ (V ∖ 𝐴) ↔ ¬ ¬ 𝑥𝐴)
92, 4, 83bitr2i 208 . . . . . 6 (𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ ¬ ¬ 𝑥𝐴)
109bibi1i 228 . . . . 5 ((𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ 𝑥𝐴) ↔ (¬ ¬ 𝑥𝐴𝑥𝐴))
11 biimp 118 . . . . . 6 ((¬ ¬ 𝑥𝐴𝑥𝐴) → (¬ ¬ 𝑥𝐴𝑥𝐴))
12 id 19 . . . . . . 7 ((¬ ¬ 𝑥𝐴𝑥𝐴) → (¬ ¬ 𝑥𝐴𝑥𝐴))
13 notnot 630 . . . . . . 7 (𝑥𝐴 → ¬ ¬ 𝑥𝐴)
1412, 13impbid1 142 . . . . . 6 ((¬ ¬ 𝑥𝐴𝑥𝐴) → (¬ ¬ 𝑥𝐴𝑥𝐴))
1511, 14impbii 126 . . . . 5 ((¬ ¬ 𝑥𝐴𝑥𝐴) ↔ (¬ ¬ 𝑥𝐴𝑥𝐴))
1610, 15bitri 184 . . . 4 ((𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ 𝑥𝐴) ↔ (¬ ¬ 𝑥𝐴𝑥𝐴))
17 df-stab 832 . . . 4 (STAB 𝑥𝐴 ↔ (¬ ¬ 𝑥𝐴𝑥𝐴))
1816, 17bitr4i 187 . . 3 ((𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ 𝑥𝐴) ↔ STAB 𝑥𝐴)
1918albii 1481 . 2 (∀𝑥(𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ 𝑥𝐴) ↔ ∀𝑥STAB 𝑥𝐴)
201, 19bitri 184 1 ((V ∖ (V ∖ 𝐴)) = 𝐴 ↔ ∀𝑥STAB 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  STAB wstab 831  wal 1362   = wceq 1364  wcel 2164  Vcvv 2760  cdif 3150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-stab 832  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator