Proof of Theorem ddifstab
| Step | Hyp | Ref
 | Expression | 
| 1 |   | dfcleq 2190 | 
. 2
⊢ ((V
∖ (V ∖ 𝐴)) =
𝐴 ↔ ∀𝑥(𝑥 ∈ (V ∖ (V ∖ 𝐴)) ↔ 𝑥 ∈ 𝐴)) | 
| 2 |   | eldif 3166 | 
. . . . . . 7
⊢ (𝑥 ∈ (V ∖ (V ∖
𝐴)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴))) | 
| 3 |   | vex 2766 | 
. . . . . . . 8
⊢ 𝑥 ∈ V | 
| 4 | 3 | biantrur 303 | 
. . . . . . 7
⊢ (¬
𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V ∖ 𝐴))) | 
| 5 |   | eldif 3166 | 
. . . . . . . . 9
⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴)) | 
| 6 | 3 | biantrur 303 | 
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴)) | 
| 7 | 5, 6 | bitr4i 187 | 
. . . . . . . 8
⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) | 
| 8 | 7 | notbii 669 | 
. . . . . . 7
⊢ (¬
𝑥 ∈ (V ∖ 𝐴) ↔ ¬ ¬ 𝑥 ∈ 𝐴) | 
| 9 | 2, 4, 8 | 3bitr2i 208 | 
. . . . . 6
⊢ (𝑥 ∈ (V ∖ (V ∖
𝐴)) ↔ ¬ ¬
𝑥 ∈ 𝐴) | 
| 10 | 9 | bibi1i 228 | 
. . . . 5
⊢ ((𝑥 ∈ (V ∖ (V ∖
𝐴)) ↔ 𝑥 ∈ 𝐴) ↔ (¬ ¬ 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | 
| 11 |   | biimp 118 | 
. . . . . 6
⊢ ((¬
¬ 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) → (¬ ¬ 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴)) | 
| 12 |   | id 19 | 
. . . . . . 7
⊢ ((¬
¬ 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) → (¬ ¬ 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴)) | 
| 13 |   | notnot 630 | 
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → ¬ ¬ 𝑥 ∈ 𝐴) | 
| 14 | 12, 13 | impbid1 142 | 
. . . . . 6
⊢ ((¬
¬ 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) → (¬ ¬ 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | 
| 15 | 11, 14 | impbii 126 | 
. . . . 5
⊢ ((¬
¬ 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) ↔ (¬ ¬ 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴)) | 
| 16 | 10, 15 | bitri 184 | 
. . . 4
⊢ ((𝑥 ∈ (V ∖ (V ∖
𝐴)) ↔ 𝑥 ∈ 𝐴) ↔ (¬ ¬ 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴)) | 
| 17 |   | df-stab 832 | 
. . . 4
⊢
(STAB 𝑥 ∈ 𝐴 ↔ (¬ ¬ 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴)) | 
| 18 | 16, 17 | bitr4i 187 | 
. . 3
⊢ ((𝑥 ∈ (V ∖ (V ∖
𝐴)) ↔ 𝑥 ∈ 𝐴) ↔ STAB 𝑥 ∈ 𝐴) | 
| 19 | 18 | albii 1484 | 
. 2
⊢
(∀𝑥(𝑥 ∈ (V ∖ (V ∖
𝐴)) ↔ 𝑥 ∈ 𝐴) ↔ ∀𝑥STAB 𝑥 ∈ 𝐴) | 
| 20 | 1, 19 | bitri 184 | 
1
⊢ ((V
∖ (V ∖ 𝐴)) =
𝐴 ↔ ∀𝑥STAB 𝑥 ∈ 𝐴) |