ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  asymref GIF version

Theorem asymref 5090
Description: Two ways of saying a relation is antisymmetric and reflexive. 𝑅 is the field of a relation by relfld 5233. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
asymref ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem asymref
StepHypRef Expression
1 df-br 4063 . . . . . . . . . . 11 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
2 vex 2782 . . . . . . . . . . . 12 𝑥 ∈ V
3 vex 2782 . . . . . . . . . . . 12 𝑦 ∈ V
42, 3opeluu 4518 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → (𝑥 𝑅𝑦 𝑅))
51, 4sylbi 121 . . . . . . . . . 10 (𝑥𝑅𝑦 → (𝑥 𝑅𝑦 𝑅))
65simpld 112 . . . . . . . . 9 (𝑥𝑅𝑦𝑥 𝑅)
76adantr 276 . . . . . . . 8 ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 𝑅)
87pm4.71ri 392 . . . . . . 7 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)))
98bibi1i 228 . . . . . 6 (((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅𝑥 = 𝑦)) ↔ ((𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (𝑥 𝑅𝑥 = 𝑦)))
10 elin 3367 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
112, 3brcnv 4882 . . . . . . . . . 10 (𝑥𝑅𝑦𝑦𝑅𝑥)
12 df-br 4063 . . . . . . . . . 10 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
1311, 12bitr3i 186 . . . . . . . . 9 (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
141, 13anbi12i 460 . . . . . . . 8 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
1510, 14bitr4i 187 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
163opelres 4986 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 𝑅))
17 df-br 4063 . . . . . . . . . 10 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
183ideq 4851 . . . . . . . . . 10 (𝑥 I 𝑦𝑥 = 𝑦)
1917, 18bitr3i 186 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
2019anbi2ci 459 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 𝑅) ↔ (𝑥 𝑅𝑥 = 𝑦))
2116, 20bitri 184 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅) ↔ (𝑥 𝑅𝑥 = 𝑦))
2215, 21bibi12i 229 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥 𝑅𝑥 = 𝑦)))
23 pm5.32 453 . . . . . 6 ((𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) ↔ ((𝑥 𝑅 ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (𝑥 𝑅𝑥 = 𝑦)))
249, 22, 233bitr4i 212 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ (𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2524albii 1496 . . . 4 (∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ∀𝑦(𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
26 19.21v 1899 . . . 4 (∀𝑦(𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) ↔ (𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2725, 26bitri 184 . . 3 (∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ (𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
2827albii 1496 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)) ↔ ∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
29 relcnv 5082 . . . 4 Rel 𝑅
30 relin2 4815 . . . 4 (Rel 𝑅 → Rel (𝑅𝑅))
3129, 30ax-mp 5 . . 3 Rel (𝑅𝑅)
32 relres 5009 . . 3 Rel ( I ↾ 𝑅)
33 eqrel 4785 . . 3 ((Rel (𝑅𝑅) ∧ Rel ( I ↾ 𝑅)) → ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅))))
3431, 32, 33mp2an 426 . 2 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝑅)))
35 df-ral 2493 . 2 (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)))
3628, 34, 353bitr4i 212 1 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1373   = wceq 1375  wcel 2180  wral 2488  cin 3176  cop 3649   cuni 3867   class class class wbr 4062   I cid 4356  ccnv 4695  cres 4698  Rel wrel 4701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-res 4708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator