ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrab3t GIF version

Theorem elrab3t 2881
Description: Membership in a restricted class abstraction, using implicit substitution. (Closed theorem version of elrab3 2883.) (Contributed by Thierry Arnoux, 31-Aug-2017.)
Assertion
Ref Expression
elrab3t ((∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elrab3t
StepHypRef Expression
1 simpr 109 . . 3 ((∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → 𝐴𝐵)
2 nfa1 1529 . . . . 5 𝑥𝑥(𝑥 = 𝐴 → (𝜑𝜓))
3 nfv 1516 . . . . 5 𝑥 𝐴𝐵
42, 3nfan 1553 . . . 4 𝑥(∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵)
5 simpl 108 . . . . . 6 ((∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)))
6519.21bi 1546 . . . . 5 ((∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (𝑥 = 𝐴 → (𝜑𝜓)))
7 eleq1 2229 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
87biimparc 297 . . . . . . . . 9 ((𝐴𝐵𝑥 = 𝐴) → 𝑥𝐵)
98biantrurd 303 . . . . . . . 8 ((𝐴𝐵𝑥 = 𝐴) → (𝜑 ↔ (𝑥𝐵𝜑)))
109bibi1d 232 . . . . . . 7 ((𝐴𝐵𝑥 = 𝐴) → ((𝜑𝜓) ↔ ((𝑥𝐵𝜑) ↔ 𝜓)))
1110pm5.74da 440 . . . . . 6 (𝐴𝐵 → ((𝑥 = 𝐴 → (𝜑𝜓)) ↔ (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ 𝜓))))
1211adantl 275 . . . . 5 ((∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → ((𝑥 = 𝐴 → (𝜑𝜓)) ↔ (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ 𝜓))))
136, 12mpbid 146 . . . 4 ((∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ 𝜓)))
144, 13alrimi 1510 . . 3 ((∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → ∀𝑥(𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ 𝜓)))
15 elabgt 2867 . . 3 ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ 𝜓))
161, 14, 15syl2anc 409 . 2 ((∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ 𝜓))
17 df-rab 2453 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
1817eleq2i 2233 . . 3 (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)})
1918bibi1i 227 . 2 ((𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓) ↔ (𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ 𝜓))
2016, 19sylibr 133 1 ((∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341   = wceq 1343  wcel 2136  {cab 2151  {crab 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728
This theorem is referenced by:  f1oresrab  5650
  Copyright terms: Public domain W3C validator