ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpodxf GIF version

Theorem ovmpodxf 5994
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovmpodx.1 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
ovmpodx.2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
ovmpodx.3 ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)
ovmpodx.4 (𝜑𝐴𝐶)
ovmpodx.5 (𝜑𝐵𝐿)
ovmpodx.6 (𝜑𝑆𝑋)
ovmpodxf.px 𝑥𝜑
ovmpodxf.py 𝑦𝜑
ovmpodxf.ay 𝑦𝐴
ovmpodxf.bx 𝑥𝐵
ovmpodxf.sx 𝑥𝑆
ovmpodxf.sy 𝑦𝑆
Assertion
Ref Expression
ovmpodxf (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐿(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem ovmpodxf
StepHypRef Expression
1 ovmpodx.1 . . 3 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
21oveqd 5886 . 2 (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
3 ovmpodx.4 . . . 4 (𝜑𝐴𝐶)
4 ovmpodxf.px . . . . 5 𝑥𝜑
5 ovmpodx.5 . . . . . 6 (𝜑𝐵𝐿)
6 ovmpodxf.py . . . . . . 7 𝑦𝜑
7 eqid 2177 . . . . . . . . 9 (𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅)
87ovmpt4g 5991 . . . . . . . 8 ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)
98a1i 9 . . . . . . 7 (𝜑 → ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
106, 9alrimi 1522 . . . . . 6 (𝜑 → ∀𝑦((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
115, 10spsbcd 2975 . . . . 5 (𝜑[𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
124, 11alrimi 1522 . . . 4 (𝜑 → ∀𝑥[𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
133, 12spsbcd 2975 . . 3 (𝜑[𝐴 / 𝑥][𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
145adantr 276 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵𝐿)
15 simplr 528 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴)
163ad2antrr 488 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐴𝐶)
1715, 16eqeltrd 2254 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝐶)
185ad2antrr 488 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐵𝐿)
19 simpr 110 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
20 ovmpodx.3 . . . . . . . . 9 ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)
2120adantr 276 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐷 = 𝐿)
2218, 19, 213eltr4d 2261 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑦𝐷)
23 ovmpodx.2 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
2423anassrs 400 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆)
25 ovmpodx.6 . . . . . . . . . 10 (𝜑𝑆𝑋)
26 elex 2748 . . . . . . . . . 10 (𝑆𝑋𝑆 ∈ V)
2725, 26syl 14 . . . . . . . . 9 (𝜑𝑆 ∈ V)
2827ad2antrr 488 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑆 ∈ V)
2924, 28eqeltrd 2254 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑅 ∈ V)
30 biimt 241 . . . . . . 7 ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → ((𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅 ↔ ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)))
3117, 22, 29, 30syl3anc 1238 . . . . . 6 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → ((𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅 ↔ ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)))
3215, 19oveq12d 5887 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
3332, 24eqeq12d 2192 . . . . . 6 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → ((𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅 ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
3431, 33bitr3d 190 . . . . 5 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
35 ovmpodxf.ay . . . . . . 7 𝑦𝐴
3635nfeq2 2331 . . . . . 6 𝑦 𝑥 = 𝐴
376, 36nfan 1565 . . . . 5 𝑦(𝜑𝑥 = 𝐴)
38 nfmpo2 5937 . . . . . . . 8 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
39 nfcv 2319 . . . . . . . 8 𝑦𝐵
4035, 38, 39nfov 5899 . . . . . . 7 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
41 ovmpodxf.sy . . . . . . 7 𝑦𝑆
4240, 41nfeq 2327 . . . . . 6 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
4342a1i 9 . . . . 5 ((𝜑𝑥 = 𝐴) → Ⅎ𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
4414, 34, 37, 43sbciedf 2998 . . . 4 ((𝜑𝑥 = 𝐴) → ([𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
45 nfcv 2319 . . . . . . 7 𝑥𝐴
46 nfmpo1 5936 . . . . . . 7 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
47 ovmpodxf.bx . . . . . . 7 𝑥𝐵
4845, 46, 47nfov 5899 . . . . . 6 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
49 ovmpodxf.sx . . . . . 6 𝑥𝑆
5048, 49nfeq 2327 . . . . 5 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
5150a1i 9 . . . 4 (𝜑 → Ⅎ𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
523, 44, 4, 51sbciedf 2998 . . 3 (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
5313, 52mpbid 147 . 2 (𝜑 → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
542, 53eqtrd 2210 1 (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wnf 1460  wcel 2148  wnfc 2306  Vcvv 2737  [wsbc 2962  (class class class)co 5869  cmpo 5871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-setind 4533
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874
This theorem is referenced by:  ovmpodx  5995  mpoxopoveq  6235
  Copyright terms: Public domain W3C validator