Proof of Theorem ovmpodxf
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ovmpodx.1 | 
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | 
| 2 | 1 | oveqd 5939 | 
. 2
⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵)) | 
| 3 |   | ovmpodx.4 | 
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝐶) | 
| 4 |   | ovmpodxf.px | 
. . . . 5
⊢
Ⅎ𝑥𝜑 | 
| 5 |   | ovmpodx.5 | 
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝐿) | 
| 6 |   | ovmpodxf.py | 
. . . . . . 7
⊢
Ⅎ𝑦𝜑 | 
| 7 |   | eqid 2196 | 
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | 
| 8 | 7 | ovmpt4g 6045 | 
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅) | 
| 9 | 8 | a1i 9 | 
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅)) | 
| 10 | 6, 9 | alrimi 1536 | 
. . . . . 6
⊢ (𝜑 → ∀𝑦((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅)) | 
| 11 | 5, 10 | spsbcd 3002 | 
. . . . 5
⊢ (𝜑 → [𝐵 / 𝑦]((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅)) | 
| 12 | 4, 11 | alrimi 1536 | 
. . . 4
⊢ (𝜑 → ∀𝑥[𝐵 / 𝑦]((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅)) | 
| 13 | 3, 12 | spsbcd 3002 | 
. . 3
⊢ (𝜑 → [𝐴 / 𝑥][𝐵 / 𝑦]((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅)) | 
| 14 | 5 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐿) | 
| 15 |   | simplr 528 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) | 
| 16 | 3 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐴 ∈ 𝐶) | 
| 17 | 15, 16 | eqeltrd 2273 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝐶) | 
| 18 | 5 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐵 ∈ 𝐿) | 
| 19 |   | simpr 110 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | 
| 20 |   | ovmpodx.3 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿) | 
| 21 | 20 | adantr 276 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐷 = 𝐿) | 
| 22 | 18, 19, 21 | 3eltr4d 2280 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑦 ∈ 𝐷) | 
| 23 |   | ovmpodx.2 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | 
| 24 | 23 | anassrs 400 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | 
| 25 |   | ovmpodx.6 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ 𝑋) | 
| 26 |   | elex 2774 | 
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝑋 → 𝑆 ∈ V) | 
| 27 | 25, 26 | syl 14 | 
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ V) | 
| 28 | 27 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑆 ∈ V) | 
| 29 | 24, 28 | eqeltrd 2273 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑅 ∈ V) | 
| 30 |   | biimt 241 | 
. . . . . . 7
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V) → ((𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅 ↔ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅))) | 
| 31 | 17, 22, 29, 30 | syl3anc 1249 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → ((𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅 ↔ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅))) | 
| 32 | 15, 19 | oveq12d 5940 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵)) | 
| 33 | 32, 24 | eqeq12d 2211 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → ((𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅 ↔ (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) | 
| 34 | 31, 33 | bitr3d 190 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) | 
| 35 |   | ovmpodxf.ay | 
. . . . . . 7
⊢
Ⅎ𝑦𝐴 | 
| 36 | 35 | nfeq2 2351 | 
. . . . . 6
⊢
Ⅎ𝑦 𝑥 = 𝐴 | 
| 37 | 6, 36 | nfan 1579 | 
. . . . 5
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 = 𝐴) | 
| 38 |   | nfmpo2 5990 | 
. . . . . . . 8
⊢
Ⅎ𝑦(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | 
| 39 |   | nfcv 2339 | 
. . . . . . . 8
⊢
Ⅎ𝑦𝐵 | 
| 40 | 35, 38, 39 | nfov 5952 | 
. . . . . . 7
⊢
Ⅎ𝑦(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) | 
| 41 |   | ovmpodxf.sy | 
. . . . . . 7
⊢
Ⅎ𝑦𝑆 | 
| 42 | 40, 41 | nfeq 2347 | 
. . . . . 6
⊢
Ⅎ𝑦(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆 | 
| 43 | 42 | a1i 9 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → Ⅎ𝑦(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆) | 
| 44 | 14, 34, 37, 43 | sbciedf 3025 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) | 
| 45 |   | nfcv 2339 | 
. . . . . . 7
⊢
Ⅎ𝑥𝐴 | 
| 46 |   | nfmpo1 5989 | 
. . . . . . 7
⊢
Ⅎ𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | 
| 47 |   | ovmpodxf.bx | 
. . . . . . 7
⊢
Ⅎ𝑥𝐵 | 
| 48 | 45, 46, 47 | nfov 5952 | 
. . . . . 6
⊢
Ⅎ𝑥(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) | 
| 49 |   | ovmpodxf.sx | 
. . . . . 6
⊢
Ⅎ𝑥𝑆 | 
| 50 | 48, 49 | nfeq 2347 | 
. . . . 5
⊢
Ⅎ𝑥(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆 | 
| 51 | 50 | a1i 9 | 
. . . 4
⊢ (𝜑 → Ⅎ𝑥(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆) | 
| 52 | 3, 44, 4, 51 | sbciedf 3025 | 
. . 3
⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) | 
| 53 | 13, 52 | mpbid 147 | 
. 2
⊢ (𝜑 → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆) | 
| 54 | 2, 53 | eqtrd 2229 | 
1
⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |