Proof of Theorem ceqsralt
Step | Hyp | Ref
| Expression |
1 | | df-ral 2449 |
. . . 4
⊢
(∀𝑥 ∈
𝐵 (𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
2 | | eleq1 2229 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
3 | 2 | pm5.32ri 451 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ (𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴)) |
4 | 3 | imbi1i 237 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) → 𝜑) ↔ ((𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴) → 𝜑)) |
5 | | impexp 261 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) → 𝜑) ↔ (𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
6 | | impexp 261 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴) → 𝜑) ↔ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
7 | 4, 5, 6 | 3bitr3i 209 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑)) ↔ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
8 | 7 | albii 1458 |
. . . . 5
⊢
(∀𝑥(𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑)) ↔ ∀𝑥(𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑))) |
9 | 8 | a1i 9 |
. . . 4
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥(𝑥 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑)) ↔ ∀𝑥(𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑)))) |
10 | 1, 9 | syl5bb 191 |
. . 3
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑)))) |
11 | | 19.21v 1861 |
. . 3
⊢
(∀𝑥(𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝜑)) ↔ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
12 | 10, 11 | bitrdi 195 |
. 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
13 | | biimt 240 |
. . 3
⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
14 | 13 | 3ad2ant3 1010 |
. 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
15 | | ceqsalt 2752 |
. 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
16 | 12, 14, 15 | 3bitr2d 215 |
1
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |