ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsralt GIF version

Theorem ceqsralt 2713
Description: Restricted quantifier version of ceqsalt 2712. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
Assertion
Ref Expression
ceqsralt ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem ceqsralt
StepHypRef Expression
1 df-ral 2421 . . . 4 (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥𝐵 → (𝑥 = 𝐴𝜑)))
2 eleq1 2202 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
32pm5.32ri 450 . . . . . . . 8 ((𝑥𝐵𝑥 = 𝐴) ↔ (𝐴𝐵𝑥 = 𝐴))
43imbi1i 237 . . . . . . 7 (((𝑥𝐵𝑥 = 𝐴) → 𝜑) ↔ ((𝐴𝐵𝑥 = 𝐴) → 𝜑))
5 impexp 261 . . . . . . 7 (((𝑥𝐵𝑥 = 𝐴) → 𝜑) ↔ (𝑥𝐵 → (𝑥 = 𝐴𝜑)))
6 impexp 261 . . . . . . 7 (((𝐴𝐵𝑥 = 𝐴) → 𝜑) ↔ (𝐴𝐵 → (𝑥 = 𝐴𝜑)))
74, 5, 63bitr3i 209 . . . . . 6 ((𝑥𝐵 → (𝑥 = 𝐴𝜑)) ↔ (𝐴𝐵 → (𝑥 = 𝐴𝜑)))
87albii 1446 . . . . 5 (∀𝑥(𝑥𝐵 → (𝑥 = 𝐴𝜑)) ↔ ∀𝑥(𝐴𝐵 → (𝑥 = 𝐴𝜑)))
98a1i 9 . . . 4 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥(𝑥𝐵 → (𝑥 = 𝐴𝜑)) ↔ ∀𝑥(𝐴𝐵 → (𝑥 = 𝐴𝜑))))
101, 9syl5bb 191 . . 3 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝐴𝐵 → (𝑥 = 𝐴𝜑))))
11 19.21v 1845 . . 3 (∀𝑥(𝐴𝐵 → (𝑥 = 𝐴𝜑)) ↔ (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝜑)))
1210, 11syl6bb 195 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝜑))))
13 biimt 240 . . 3 (𝐴𝐵 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝜑))))
14133ad2ant3 1004 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝜑))))
15 ceqsalt 2712 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
1612, 14, 153bitr2d 215 1 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962  wal 1329   = wceq 1331  wnf 1436  wcel 1480  wral 2416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-ral 2421  df-v 2688
This theorem is referenced by:  ceqsralv  2717
  Copyright terms: Public domain W3C validator