ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimt Unicode version

Theorem biimt 241
Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.)
Assertion
Ref Expression
biimt  |-  ( ph  ->  ( ps  <->  ( ph  ->  ps ) ) )

Proof of Theorem biimt
StepHypRef Expression
1 ax-1 6 . 2  |-  ( ps 
->  ( ph  ->  ps ) )
2 pm2.27 40 . 2  |-  ( ph  ->  ( ( ph  ->  ps )  ->  ps )
)
31, 2impbid2 143 1  |-  ( ph  ->  ( ps  <->  ( ph  ->  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.5  242  a1bi  243  abai  560  dedlem0a  968  ceqsralt  2766  reu8  2935  csbiebt  3098  r19.3rm  3513  fncnv  5284  ovmpodxf  6002  brecop  6627  tgss2  13664
  Copyright terms: Public domain W3C validator