ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fncnv GIF version

Theorem fncnv 5301
Description: Single-rootedness (see funcnv 5296) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
fncnv ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem fncnv
StepHypRef Expression
1 df-fn 5238 . 2 ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ (Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵))
2 df-rn 4655 . . . 4 ran (𝑅 ∩ (𝐴 × 𝐵)) = dom (𝑅 ∩ (𝐴 × 𝐵))
32eqeq1i 2197 . . 3 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵)
43anbi2i 457 . 2 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ (Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵))
5 rninxp 5090 . . . . 5 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦)
65anbi1i 458 . . . 4 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
7 funcnv 5296 . . . . . 6 (Fun (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦)
8 raleq 2686 . . . . . . 7 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦))
9 moanimv 2113 . . . . . . . . . 10 (∃*𝑥(𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)) ↔ (𝑦𝐵 → ∃*𝑥(𝑥𝐴𝑥𝑅𝑦)))
10 brinxp2 4711 . . . . . . . . . . . 12 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑥𝐴𝑦𝐵𝑥𝑅𝑦))
11 3anan12 992 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐵𝑥𝑅𝑦) ↔ (𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
1210, 11bitri 184 . . . . . . . . . . 11 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
1312mobii 2075 . . . . . . . . . 10 (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∃*𝑥(𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
14 df-rmo 2476 . . . . . . . . . . 11 (∃*𝑥𝐴 𝑥𝑅𝑦 ↔ ∃*𝑥(𝑥𝐴𝑥𝑅𝑦))
1514imbi2i 226 . . . . . . . . . 10 ((𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (𝑦𝐵 → ∃*𝑥(𝑥𝐴𝑥𝑅𝑦)))
169, 13, 153bitr4i 212 . . . . . . . . 9 (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦))
17 biimt 241 . . . . . . . . 9 (𝑦𝐵 → (∃*𝑥𝐴 𝑥𝑅𝑦 ↔ (𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦)))
1816, 17bitr4id 199 . . . . . . . 8 (𝑦𝐵 → (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∃*𝑥𝐴 𝑥𝑅𝑦))
1918ralbiia 2504 . . . . . . 7 (∀𝑦𝐵 ∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦)
208, 19bitrdi 196 . . . . . 6 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
217, 20bitrid 192 . . . . 5 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (Fun (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
2221pm5.32i 454 . . . 4 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))) ↔ (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
23 r19.26 2616 . . . 4 (∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
246, 22, 233bitr4i 212 . . 3 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))) ↔ ∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
25 ancom 266 . . 3 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))))
26 reu5 2703 . . . 4 (∃!𝑥𝐴 𝑥𝑅𝑦 ↔ (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
2726ralbii 2496 . . 3 (∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦 ↔ ∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
2824, 25, 273bitr4i 212 . 2 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
291, 4, 283bitr2i 208 1 ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  ∃*wmo 2039  wcel 2160  wral 2468  wrex 2469  ∃!wreu 2470  ∃*wrmo 2471  cin 3143   class class class wbr 4018   × cxp 4642  ccnv 4643  dom cdm 4644  ran crn 4645  Fun wfun 5229   Fn wfn 5230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-fun 5237  df-fn 5238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator