ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fncnv GIF version

Theorem fncnv 5386
Description: Single-rootedness (see funcnv 5381) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
fncnv ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem fncnv
StepHypRef Expression
1 df-fn 5320 . 2 ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ (Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵))
2 df-rn 4729 . . . 4 ran (𝑅 ∩ (𝐴 × 𝐵)) = dom (𝑅 ∩ (𝐴 × 𝐵))
32eqeq1i 2237 . . 3 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵)
43anbi2i 457 . 2 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ (Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵))
5 rninxp 5171 . . . . 5 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦)
65anbi1i 458 . . . 4 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
7 funcnv 5381 . . . . . 6 (Fun (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦)
8 raleq 2728 . . . . . . 7 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦))
9 moanimv 2153 . . . . . . . . . 10 (∃*𝑥(𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)) ↔ (𝑦𝐵 → ∃*𝑥(𝑥𝐴𝑥𝑅𝑦)))
10 brinxp2 4785 . . . . . . . . . . . 12 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑥𝐴𝑦𝐵𝑥𝑅𝑦))
11 3anan12 1014 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐵𝑥𝑅𝑦) ↔ (𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
1210, 11bitri 184 . . . . . . . . . . 11 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
1312mobii 2114 . . . . . . . . . 10 (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∃*𝑥(𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
14 df-rmo 2516 . . . . . . . . . . 11 (∃*𝑥𝐴 𝑥𝑅𝑦 ↔ ∃*𝑥(𝑥𝐴𝑥𝑅𝑦))
1514imbi2i 226 . . . . . . . . . 10 ((𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (𝑦𝐵 → ∃*𝑥(𝑥𝐴𝑥𝑅𝑦)))
169, 13, 153bitr4i 212 . . . . . . . . 9 (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦))
17 biimt 241 . . . . . . . . 9 (𝑦𝐵 → (∃*𝑥𝐴 𝑥𝑅𝑦 ↔ (𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦)))
1816, 17bitr4id 199 . . . . . . . 8 (𝑦𝐵 → (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∃*𝑥𝐴 𝑥𝑅𝑦))
1918ralbiia 2544 . . . . . . 7 (∀𝑦𝐵 ∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦)
208, 19bitrdi 196 . . . . . 6 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
217, 20bitrid 192 . . . . 5 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (Fun (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
2221pm5.32i 454 . . . 4 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))) ↔ (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
23 r19.26 2657 . . . 4 (∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
246, 22, 233bitr4i 212 . . 3 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))) ↔ ∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
25 ancom 266 . . 3 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))))
26 reu5 2749 . . . 4 (∃!𝑥𝐴 𝑥𝑅𝑦 ↔ (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
2726ralbii 2536 . . 3 (∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦 ↔ ∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
2824, 25, 273bitr4i 212 . 2 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
291, 4, 283bitr2i 208 1 ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  ∃*wmo 2078  wcel 2200  wral 2508  wrex 2509  ∃!wreu 2510  ∃*wrmo 2511  cin 3196   class class class wbr 4082   × cxp 4716  ccnv 4717  dom cdm 4718  ran crn 4719  Fun wfun 5311   Fn wfn 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-fun 5319  df-fn 5320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator