| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3c | GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.) |
| Ref | Expression |
|---|---|
| syl3c.1 | ⊢ (𝜑 → 𝜓) |
| syl3c.2 | ⊢ (𝜑 → 𝜒) |
| syl3c.3 | ⊢ (𝜑 → 𝜃) |
| syl3c.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl3c | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3c.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 2 | syl3c.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | syl3c.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 4 | syl3c.4 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
| 5 | 2, 3, 4 | sylc 62 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 6 | 1, 5 | mpd 13 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: bilukdc 1416 disjiun 4042 tfrlem1 6401 tfrcl 6457 mkvprop 7267 ccfunen 7383 caucvgprprlemval 7808 suplocsrlem 7928 peano5uzti 9488 seqf1oglem2 10672 zfz1iso 10993 lcmneg 12440 prmind2 12486 pcfac 12717 cnmpt12 14803 cnmpt22 14810 limccnp2lem 15192 2sqlem6 15641 2sqlem8 15644 gropd 15690 grstructd2dom 15691 sbthom 16039 |
| Copyright terms: Public domain | W3C validator |