Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl3c | GIF version |
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.) |
Ref | Expression |
---|---|
syl3c.1 | ⊢ (𝜑 → 𝜓) |
syl3c.2 | ⊢ (𝜑 → 𝜒) |
syl3c.3 | ⊢ (𝜑 → 𝜃) |
syl3c.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
Ref | Expression |
---|---|
syl3c | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3c.3 | . 2 ⊢ (𝜑 → 𝜃) | |
2 | syl3c.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | syl3c.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
4 | syl3c.4 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
5 | 2, 3, 4 | sylc 62 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
6 | 1, 5 | mpd 13 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: bilukdc 1386 disjiun 3977 tfrlem1 6276 tfrcl 6332 mkvprop 7122 ccfunen 7205 caucvgprprlemval 7629 suplocsrlem 7749 peano5uzti 9299 zfz1iso 10754 lcmneg 12006 prmind2 12052 pcfac 12280 cnmpt12 12927 cnmpt22 12934 limccnp2lem 13285 2sqlem6 13596 2sqlem8 13599 sbthom 13905 |
Copyright terms: Public domain | W3C validator |