ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3c GIF version

Theorem syl3c 63
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.)
Hypotheses
Ref Expression
syl3c.1 (𝜑𝜓)
syl3c.2 (𝜑𝜒)
syl3c.3 (𝜑𝜃)
syl3c.4 (𝜓 → (𝜒 → (𝜃𝜏)))
Assertion
Ref Expression
syl3c (𝜑𝜏)

Proof of Theorem syl3c
StepHypRef Expression
1 syl3c.3 . 2 (𝜑𝜃)
2 syl3c.1 . . 3 (𝜑𝜓)
3 syl3c.2 . . 3 (𝜑𝜒)
4 syl3c.4 . . 3 (𝜓 → (𝜒 → (𝜃𝜏)))
52, 3, 4sylc 62 . 2 (𝜑 → (𝜃𝜏))
61, 5mpd 13 1 (𝜑𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  bilukdc  1386  disjiun  3977  tfrlem1  6276  tfrcl  6332  mkvprop  7122  ccfunen  7205  caucvgprprlemval  7629  suplocsrlem  7749  peano5uzti  9299  zfz1iso  10754  lcmneg  12006  prmind2  12052  pcfac  12280  cnmpt12  12927  cnmpt22  12934  limccnp2lem  13285  2sqlem6  13596  2sqlem8  13599  sbthom  13905
  Copyright terms: Public domain W3C validator