ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3c GIF version

Theorem syl3c 63
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.)
Hypotheses
Ref Expression
syl3c.1 (𝜑𝜓)
syl3c.2 (𝜑𝜒)
syl3c.3 (𝜑𝜃)
syl3c.4 (𝜓 → (𝜒 → (𝜃𝜏)))
Assertion
Ref Expression
syl3c (𝜑𝜏)

Proof of Theorem syl3c
StepHypRef Expression
1 syl3c.3 . 2 (𝜑𝜃)
2 syl3c.1 . . 3 (𝜑𝜓)
3 syl3c.2 . . 3 (𝜑𝜒)
4 syl3c.4 . . 3 (𝜓 → (𝜒 → (𝜃𝜏)))
52, 3, 4sylc 62 . 2 (𝜑 → (𝜃𝜏))
61, 5mpd 13 1 (𝜑𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  bilukdc  1438  disjiun  4078  tfrlem1  6460  tfrcl  6516  mkvprop  7333  ccfunen  7458  caucvgprprlemval  7883  suplocsrlem  8003  peano5uzti  9563  seqf1oglem2  10750  zfz1iso  11071  wrd2ind  11263  lcmneg  12604  prmind2  12650  pcfac  12881  cnmpt12  14969  cnmpt22  14976  limccnp2lem  15358  2sqlem6  15807  2sqlem8  15810  gropd  15856  grstructd2dom  15857  sbthom  16424
  Copyright terms: Public domain W3C validator