ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3c GIF version

Theorem syl3c 63
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.)
Hypotheses
Ref Expression
syl3c.1 (𝜑𝜓)
syl3c.2 (𝜑𝜒)
syl3c.3 (𝜑𝜃)
syl3c.4 (𝜓 → (𝜒 → (𝜃𝜏)))
Assertion
Ref Expression
syl3c (𝜑𝜏)

Proof of Theorem syl3c
StepHypRef Expression
1 syl3c.3 . 2 (𝜑𝜃)
2 syl3c.1 . . 3 (𝜑𝜓)
3 syl3c.2 . . 3 (𝜑𝜒)
4 syl3c.4 . . 3 (𝜓 → (𝜒 → (𝜃𝜏)))
52, 3, 4sylc 62 . 2 (𝜑 → (𝜃𝜏))
61, 5mpd 13 1 (𝜑𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  bilukdc  1407  disjiun  4025  tfrlem1  6363  tfrcl  6419  mkvprop  7219  ccfunen  7326  caucvgprprlemval  7750  suplocsrlem  7870  peano5uzti  9428  seqf1oglem2  10594  zfz1iso  10915  lcmneg  12215  prmind2  12261  pcfac  12491  cnmpt12  14466  cnmpt22  14473  limccnp2lem  14855  2sqlem6  15277  2sqlem8  15280  sbthom  15586
  Copyright terms: Public domain W3C validator