ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3c GIF version

Theorem syl3c 63
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.)
Hypotheses
Ref Expression
syl3c.1 (𝜑𝜓)
syl3c.2 (𝜑𝜒)
syl3c.3 (𝜑𝜃)
syl3c.4 (𝜓 → (𝜒 → (𝜃𝜏)))
Assertion
Ref Expression
syl3c (𝜑𝜏)

Proof of Theorem syl3c
StepHypRef Expression
1 syl3c.3 . 2 (𝜑𝜃)
2 syl3c.1 . . 3 (𝜑𝜓)
3 syl3c.2 . . 3 (𝜑𝜒)
4 syl3c.4 . . 3 (𝜓 → (𝜒 → (𝜃𝜏)))
52, 3, 4sylc 62 . 2 (𝜑 → (𝜃𝜏))
61, 5mpd 13 1 (𝜑𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  bilukdc  1407  disjiun  4029  tfrlem1  6375  tfrcl  6431  mkvprop  7233  ccfunen  7347  caucvgprprlemval  7772  suplocsrlem  7892  peano5uzti  9451  seqf1oglem2  10629  zfz1iso  10950  lcmneg  12267  prmind2  12313  pcfac  12544  cnmpt12  14607  cnmpt22  14614  limccnp2lem  14996  2sqlem6  15445  2sqlem8  15448  sbthom  15757
  Copyright terms: Public domain W3C validator