| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > risset | GIF version | ||
| Description: Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| risset | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1630 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | df-rex 2489 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
| 3 | df-clel 2200 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 4 | 1, 2, 3 | 3bitr4ri 213 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-clel 2200 df-rex 2489 |
| This theorem is referenced by: clel5 2909 reueq 2971 reuind 2977 0el 3482 iunid 3982 sucel 4455 reusv3 4505 fvmptt 5665 releldm2 6261 qsid 6677 rerecclap 8785 nndiv 9059 zq 9729 4fvwrd4 10244 conjnmzb 13534 bj-bdcel 15637 |
| Copyright terms: Public domain | W3C validator |