![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > risset | GIF version |
Description: Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
risset | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1619 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | df-rex 2474 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
3 | df-clel 2185 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
4 | 1, 2, 3 | 3bitr4ri 213 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2160 ∃wrex 2469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-clel 2185 df-rex 2474 |
This theorem is referenced by: clel5 2889 reueq 2951 reuind 2957 0el 3460 iunid 3957 sucel 4428 reusv3 4478 fvmptt 5627 releldm2 6209 qsid 6625 rerecclap 8716 nndiv 8989 zq 9655 4fvwrd4 10169 conjnmzb 13216 bj-bdcel 15042 |
Copyright terms: Public domain | W3C validator |