ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  risset GIF version

Theorem risset 2498
Description: Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
risset (𝐴𝐵 ↔ ∃𝑥𝐵 𝑥 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem risset
StepHypRef Expression
1 exancom 1601 . 2 (∃𝑥(𝑥𝐵𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
2 df-rex 2454 . 2 (∃𝑥𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥𝐵𝑥 = 𝐴))
3 df-clel 2166 . 2 (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
41, 2, 33bitr4ri 212 1 (𝐴𝐵 ↔ ∃𝑥𝐵 𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-clel 2166  df-rex 2454
This theorem is referenced by:  clel5  2867  reueq  2929  reuind  2935  0el  3437  iunid  3928  sucel  4395  reusv3  4445  fvmptt  5587  releldm2  6164  qsid  6578  rerecclap  8647  nndiv  8919  zq  9585  4fvwrd4  10096  bj-bdcel  13872
  Copyright terms: Public domain W3C validator