Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdsucel GIF version

Theorem bj-bdsucel 15612
Description: Boundedness of the formula "the successor of the setvar 𝑥 belongs to the setvar 𝑦". (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-bdsucel BOUNDED suc 𝑥𝑦

Proof of Theorem bj-bdsucel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdeqsuc 15611 . 2 BOUNDED 𝑧 = suc 𝑥
21bj-bdcel 15567 1 BOUNDED suc 𝑥𝑦
Colors of variables: wff set class
Syntax hints:  wcel 2167  suc csuc 4401  BOUNDED wbd 15542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bd0 15543  ax-bdan 15545  ax-bdor 15546  ax-bdal 15548  ax-bdex 15549  ax-bdeq 15550  ax-bdel 15551  ax-bdsb 15552
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-suc 4407  df-bdc 15571
This theorem is referenced by:  bj-bdind  15660
  Copyright terms: Public domain W3C validator