| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdsucel | GIF version | ||
| Description: Boundedness of the formula "the successor of the setvar 𝑥 belongs to the setvar 𝑦". (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-bdsucel | ⊢ BOUNDED suc 𝑥 ∈ 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdeqsuc 15955 | . 2 ⊢ BOUNDED 𝑧 = suc 𝑥 | |
| 2 | 1 | bj-bdcel 15911 | 1 ⊢ BOUNDED suc 𝑥 ∈ 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 suc csuc 4420 BOUNDED wbd 15886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-bd0 15887 ax-bdan 15889 ax-bdor 15890 ax-bdal 15892 ax-bdex 15893 ax-bdeq 15894 ax-bdel 15895 ax-bdsb 15896 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-suc 4426 df-bdc 15915 |
| This theorem is referenced by: bj-bdind 16004 |
| Copyright terms: Public domain | W3C validator |