| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdsucel | GIF version | ||
| Description: Boundedness of the formula "the successor of the setvar 𝑥 belongs to the setvar 𝑦". (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-bdsucel | ⊢ BOUNDED suc 𝑥 ∈ 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdeqsuc 15527 | . 2 ⊢ BOUNDED 𝑧 = suc 𝑥 | |
| 2 | 1 | bj-bdcel 15483 | 1 ⊢ BOUNDED suc 𝑥 ∈ 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 suc csuc 4400 BOUNDED wbd 15458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bd0 15459 ax-bdan 15461 ax-bdor 15462 ax-bdal 15464 ax-bdex 15465 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-suc 4406 df-bdc 15487 |
| This theorem is referenced by: bj-bdind 15576 |
| Copyright terms: Public domain | W3C validator |