| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bd0el | GIF version | ||
| Description: Boundedness of the formula "the empty set belongs to the setvar 𝑥". (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-bd0el | ⊢ BOUNDED ∅ ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdeq0 15877 | . 2 ⊢ BOUNDED 𝑦 = ∅ | |
| 2 | 1 | bj-bdcel 15847 | 1 ⊢ BOUNDED ∅ ∈ 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ∅c0 3461 BOUNDED wbd 15822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-bd0 15823 ax-bdim 15824 ax-bdn 15827 ax-bdal 15828 ax-bdex 15829 ax-bdeq 15830 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3169 df-in 3173 df-ss 3180 df-nul 3462 df-bdc 15851 |
| This theorem is referenced by: bj-d0clsepcl 15935 bj-bdind 15940 |
| Copyright terms: Public domain | W3C validator |