| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bd0el | GIF version | ||
| Description: Boundedness of the formula "the empty set belongs to the setvar 𝑥". (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-bd0el | ⊢ BOUNDED ∅ ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdeq0 16160 | . 2 ⊢ BOUNDED 𝑦 = ∅ | |
| 2 | 1 | bj-bdcel 16130 | 1 ⊢ BOUNDED ∅ ∈ 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ∅c0 3491 BOUNDED wbd 16105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-bd0 16106 ax-bdim 16107 ax-bdn 16110 ax-bdal 16111 ax-bdex 16112 ax-bdeq 16113 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-bdc 16134 |
| This theorem is referenced by: bj-d0clsepcl 16218 bj-bdind 16223 |
| Copyright terms: Public domain | W3C validator |