Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bd0el GIF version

Theorem bj-bd0el 16161
Description: Boundedness of the formula "the empty set belongs to the setvar 𝑥". (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-bd0el BOUNDED ∅ ∈ 𝑥

Proof of Theorem bj-bd0el
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdeq0 16160 . 2 BOUNDED 𝑦 = ∅
21bj-bdcel 16130 1 BOUNDED ∅ ∈ 𝑥
Colors of variables: wff set class
Syntax hints:  wcel 2200  c0 3491  BOUNDED wbd 16105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16106  ax-bdim 16107  ax-bdn 16110  ax-bdal 16111  ax-bdex 16112  ax-bdeq 16113
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-bdc 16134
This theorem is referenced by:  bj-d0clsepcl  16218  bj-bdind  16223
  Copyright terms: Public domain W3C validator