Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bd0el GIF version

Theorem bj-bd0el 15878
Description: Boundedness of the formula "the empty set belongs to the setvar 𝑥". (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-bd0el BOUNDED ∅ ∈ 𝑥

Proof of Theorem bj-bd0el
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdeq0 15877 . 2 BOUNDED 𝑦 = ∅
21bj-bdcel 15847 1 BOUNDED ∅ ∈ 𝑥
Colors of variables: wff set class
Syntax hints:  wcel 2177  c0 3461  BOUNDED wbd 15822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-bd0 15823  ax-bdim 15824  ax-bdn 15827  ax-bdal 15828  ax-bdex 15829  ax-bdeq 15830
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3169  df-in 3173  df-ss 3180  df-nul 3462  df-bdc 15851
This theorem is referenced by:  bj-d0clsepcl  15935  bj-bdind  15940
  Copyright terms: Public domain W3C validator