Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bd0el | GIF version |
Description: Boundedness of the formula "the empty set belongs to the setvar 𝑥". (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-bd0el | ⊢ BOUNDED ∅ ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdeq0 13709 | . 2 ⊢ BOUNDED 𝑦 = ∅ | |
2 | 1 | bj-bdcel 13679 | 1 ⊢ BOUNDED ∅ ∈ 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ∅c0 3408 BOUNDED wbd 13654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-bd0 13655 ax-bdim 13656 ax-bdn 13659 ax-bdal 13660 ax-bdex 13661 ax-bdeq 13662 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-dif 3117 df-in 3121 df-ss 3128 df-nul 3409 df-bdc 13683 |
This theorem is referenced by: bj-d0clsepcl 13767 bj-bdind 13772 |
Copyright terms: Public domain | W3C validator |