![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > setindis | GIF version |
Description: Axiom of set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) |
Ref | Expression |
---|---|
setindis.nf0 | ⊢ Ⅎ𝑥𝜓 |
setindis.nf1 | ⊢ Ⅎ𝑥𝜒 |
setindis.nf2 | ⊢ Ⅎ𝑦𝜑 |
setindis.nf3 | ⊢ Ⅎ𝑦𝜓 |
setindis.1 | ⊢ (𝑥 = 𝑧 → (𝜑 → 𝜓)) |
setindis.2 | ⊢ (𝑥 = 𝑦 → (𝜒 → 𝜑)) |
Ref | Expression |
---|---|
setindis | ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
2 | setindis.nf0 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | nfralxy 2515 | . . . 4 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 𝜓 |
4 | setindis.nf1 | . . . 4 ⊢ Ⅎ𝑥𝜒 | |
5 | 3, 4 | nfim 1572 | . . 3 ⊢ Ⅎ𝑥(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) |
6 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑦𝑥 | |
7 | setindis.nf3 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
8 | 6, 7 | nfralxy 2515 | . . . 4 ⊢ Ⅎ𝑦∀𝑧 ∈ 𝑥 𝜓 |
9 | setindis.nf2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
10 | 8, 9 | nfim 1572 | . . 3 ⊢ Ⅎ𝑦(∀𝑧 ∈ 𝑥 𝜓 → 𝜑) |
11 | raleq 2673 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑧 ∈ 𝑦 𝜓 ↔ ∀𝑧 ∈ 𝑥 𝜓)) | |
12 | 11 | biimprd 158 | . . . 4 ⊢ (𝑦 = 𝑥 → (∀𝑧 ∈ 𝑥 𝜓 → ∀𝑧 ∈ 𝑦 𝜓)) |
13 | setindis.2 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜒 → 𝜑)) | |
14 | 13 | equcoms 1708 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜒 → 𝜑)) |
15 | 12, 14 | imim12d 74 | . . 3 ⊢ (𝑦 = 𝑥 → ((∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → (∀𝑧 ∈ 𝑥 𝜓 → 𝜑))) |
16 | 5, 10, 15 | cbv3 1742 | . 2 ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥(∀𝑧 ∈ 𝑥 𝜓 → 𝜑)) |
17 | setindis.1 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝜑 → 𝜓)) | |
18 | 2, 17 | bj-sbime 14665 | . . . . 5 ⊢ ([𝑧 / 𝑥]𝜑 → 𝜓) |
19 | 18 | ralimi 2540 | . . . 4 ⊢ (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → ∀𝑧 ∈ 𝑥 𝜓) |
20 | 19 | imim1i 60 | . . 3 ⊢ ((∀𝑧 ∈ 𝑥 𝜓 → 𝜑) → (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑)) |
21 | 20 | alimi 1455 | . 2 ⊢ (∀𝑥(∀𝑧 ∈ 𝑥 𝜓 → 𝜑) → ∀𝑥(∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑)) |
22 | ax-setind 4538 | . 2 ⊢ (∀𝑥(∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) | |
23 | 16, 21, 22 | 3syl 17 | 1 ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 Ⅎwnf 1460 [wsb 1762 ∀wral 2455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 |
This theorem is referenced by: bj-inf2vnlem4 14865 bj-findis 14871 |
Copyright terms: Public domain | W3C validator |