Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsetindis | GIF version |
Description: Axiom of bounded set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bdsetindis.bd | ⊢ BOUNDED 𝜑 |
bdsetindis.nf0 | ⊢ Ⅎ𝑥𝜓 |
bdsetindis.nf1 | ⊢ Ⅎ𝑥𝜒 |
bdsetindis.nf2 | ⊢ Ⅎ𝑦𝜑 |
bdsetindis.nf3 | ⊢ Ⅎ𝑦𝜓 |
bdsetindis.1 | ⊢ (𝑥 = 𝑧 → (𝜑 → 𝜓)) |
bdsetindis.2 | ⊢ (𝑥 = 𝑦 → (𝜒 → 𝜑)) |
Ref | Expression |
---|---|
bdsetindis | ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
2 | bdsetindis.nf0 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | nfralxy 2508 | . . . 4 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 𝜓 |
4 | bdsetindis.nf1 | . . . 4 ⊢ Ⅎ𝑥𝜒 | |
5 | 3, 4 | nfim 1565 | . . 3 ⊢ Ⅎ𝑥(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) |
6 | nfcv 2312 | . . . . 5 ⊢ Ⅎ𝑦𝑥 | |
7 | bdsetindis.nf3 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
8 | 6, 7 | nfralxy 2508 | . . . 4 ⊢ Ⅎ𝑦∀𝑧 ∈ 𝑥 𝜓 |
9 | bdsetindis.nf2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
10 | 8, 9 | nfim 1565 | . . 3 ⊢ Ⅎ𝑦(∀𝑧 ∈ 𝑥 𝜓 → 𝜑) |
11 | raleq 2665 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑧 ∈ 𝑦 𝜓 ↔ ∀𝑧 ∈ 𝑥 𝜓)) | |
12 | 11 | biimprd 157 | . . . 4 ⊢ (𝑦 = 𝑥 → (∀𝑧 ∈ 𝑥 𝜓 → ∀𝑧 ∈ 𝑦 𝜓)) |
13 | bdsetindis.2 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜒 → 𝜑)) | |
14 | 13 | equcoms 1701 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜒 → 𝜑)) |
15 | 12, 14 | imim12d 74 | . . 3 ⊢ (𝑦 = 𝑥 → ((∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → (∀𝑧 ∈ 𝑥 𝜓 → 𝜑))) |
16 | 5, 10, 15 | cbv3 1735 | . 2 ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥(∀𝑧 ∈ 𝑥 𝜓 → 𝜑)) |
17 | bdsetindis.1 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝜑 → 𝜓)) | |
18 | 2, 17 | bj-sbime 13808 | . . . . 5 ⊢ ([𝑧 / 𝑥]𝜑 → 𝜓) |
19 | 18 | ralimi 2533 | . . . 4 ⊢ (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → ∀𝑧 ∈ 𝑥 𝜓) |
20 | 19 | imim1i 60 | . . 3 ⊢ ((∀𝑧 ∈ 𝑥 𝜓 → 𝜑) → (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑)) |
21 | 20 | alimi 1448 | . 2 ⊢ (∀𝑥(∀𝑧 ∈ 𝑥 𝜓 → 𝜑) → ∀𝑥(∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑)) |
22 | bdsetindis.bd | . . 3 ⊢ BOUNDED 𝜑 | |
23 | 22 | ax-bdsetind 14003 | . 2 ⊢ (∀𝑥(∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) |
24 | 16, 21, 23 | 3syl 17 | 1 ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 Ⅎwnf 1453 [wsb 1755 ∀wral 2448 BOUNDED wbd 13847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-bdsetind 14003 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 |
This theorem is referenced by: bj-inf2vnlem3 14007 |
Copyright terms: Public domain | W3C validator |