![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbie | GIF version |
Description: Conversion of implicit substitution to explicit substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Revised by Wolf Lammen, 30-Apr-2018.) |
Ref | Expression |
---|---|
sbie.1 | ⊢ Ⅎ𝑥𝜓 |
sbie.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbie | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbie.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | nfri 1457 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
3 | sbie.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | sbieh 1720 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 Ⅎwnf 1394 [wsb 1692 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-i9 1468 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 |
This theorem is referenced by: cbveu 1972 mo4f 2008 bm1.1 2073 eqsb3lem 2190 clelsb3 2192 clelsb4 2193 cbvab 2210 clelsb3f 2232 cbvralf 2584 cbvrexf 2585 cbvreu 2588 sbralie 2603 cbvrab 2617 reu2 2803 rmo4f 2813 nfcdeq 2837 sbcco2 2862 sbcie2g 2872 sbcralt 2915 sbcrext 2916 sbcralg 2917 sbcreug 2919 sbcel12g 2946 sbceqg 2947 cbvralcsf 2990 cbvrexcsf 2991 cbvreucsf 2992 cbvrabcsf 2993 sbss 3390 disjiun 3840 sbcbrg 3894 cbvopab1 3911 cbvmpt 3933 tfis2f 4399 cbviota 4985 relelfvdm 5336 nfvres 5337 cbvriota 5618 bezoutlemnewy 11263 bezoutlemmain 11265 |
Copyright terms: Public domain | W3C validator |