| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbie | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Revised by Wolf Lammen, 30-Apr-2018.) |
| Ref | Expression |
|---|---|
| sbie.1 | ⊢ Ⅎ𝑥𝜓 |
| sbie.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbie | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbie.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | nfri 1565 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
| 3 | sbie.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | sbieh 1836 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1506 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-i9 1576 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: sbiev 1838 cbveu 2101 mo4f 2138 bm1.1 2214 eqsb1lem 2332 clelsb1 2334 clelsb2 2335 cbvab 2353 clelsb1f 2376 cbvralf 2756 cbvrexf 2757 cbvreu 2763 sbralie 2783 cbvrab 2797 reu2 2991 rmo4f 3001 nfcdeq 3025 sbcco2 3051 sbcie2g 3062 sbcralt 3105 sbcrext 3106 sbcralg 3107 sbcreug 3109 sbcel12g 3139 sbceqg 3140 cbvralcsf 3187 cbvrexcsf 3188 cbvreucsf 3189 cbvrabcsf 3190 sbss 3599 disjiun 4077 sbcbrg 4137 cbvopab1 4156 cbvmpt 4178 tfis2f 4675 cbviota 5282 relelfvdm 5658 nfvres 5662 cbvriota 5965 bezoutlemnewy 12512 bezoutlemmain 12514 |
| Copyright terms: Public domain | W3C validator |