Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbie | GIF version |
Description: Conversion of implicit substitution to explicit substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Revised by Wolf Lammen, 30-Apr-2018.) |
Ref | Expression |
---|---|
sbie.1 | ⊢ Ⅎ𝑥𝜓 |
sbie.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbie | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbie.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | nfri 1512 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
3 | sbie.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | sbieh 1783 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 Ⅎwnf 1453 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sbiev 1785 cbveu 2043 mo4f 2079 bm1.1 2155 eqsb1lem 2273 clelsb1 2275 clelsb2 2276 cbvab 2294 clelsb1f 2316 cbvralf 2689 cbvrexf 2690 cbvreu 2694 sbralie 2714 cbvrab 2728 reu2 2918 rmo4f 2928 nfcdeq 2952 sbcco2 2977 sbcie2g 2988 sbcralt 3031 sbcrext 3032 sbcralg 3033 sbcreug 3035 sbcel12g 3064 sbceqg 3065 cbvralcsf 3111 cbvrexcsf 3112 cbvreucsf 3113 cbvrabcsf 3114 sbss 3523 disjiun 3984 sbcbrg 4043 cbvopab1 4062 cbvmpt 4084 tfis2f 4568 cbviota 5165 relelfvdm 5528 nfvres 5529 cbvriota 5819 bezoutlemnewy 11951 bezoutlemmain 11953 |
Copyright terms: Public domain | W3C validator |