| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbie | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Revised by Wolf Lammen, 30-Apr-2018.) |
| Ref | Expression |
|---|---|
| sbie.1 | ⊢ Ⅎ𝑥𝜓 |
| sbie.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbie | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbie.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | nfri 1541 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
| 3 | sbie.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | sbieh 1812 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1482 [wsb 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-i9 1552 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 |
| This theorem is referenced by: sbiev 1814 cbveu 2077 mo4f 2113 bm1.1 2189 eqsb1lem 2307 clelsb1 2309 clelsb2 2310 cbvab 2328 clelsb1f 2351 cbvralf 2729 cbvrexf 2730 cbvreu 2735 sbralie 2755 cbvrab 2769 reu2 2960 rmo4f 2970 nfcdeq 2994 sbcco2 3020 sbcie2g 3031 sbcralt 3074 sbcrext 3075 sbcralg 3076 sbcreug 3078 sbcel12g 3107 sbceqg 3108 cbvralcsf 3155 cbvrexcsf 3156 cbvreucsf 3157 cbvrabcsf 3158 sbss 3567 disjiun 4038 sbcbrg 4097 cbvopab1 4116 cbvmpt 4138 tfis2f 4630 cbviota 5234 relelfvdm 5602 nfvres 5604 cbvriota 5900 bezoutlemnewy 12236 bezoutlemmain 12238 |
| Copyright terms: Public domain | W3C validator |