| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbie | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Revised by Wolf Lammen, 30-Apr-2018.) |
| Ref | Expression |
|---|---|
| sbie.1 | ⊢ Ⅎ𝑥𝜓 |
| sbie.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbie | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbie.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | nfri 1543 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
| 3 | sbie.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | sbieh 1814 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1484 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: sbiev 1816 cbveu 2079 mo4f 2115 bm1.1 2191 eqsb1lem 2309 clelsb1 2311 clelsb2 2312 cbvab 2330 clelsb1f 2353 cbvralf 2731 cbvrexf 2732 cbvreu 2737 sbralie 2757 cbvrab 2771 reu2 2965 rmo4f 2975 nfcdeq 2999 sbcco2 3025 sbcie2g 3036 sbcralt 3079 sbcrext 3080 sbcralg 3081 sbcreug 3083 sbcel12g 3112 sbceqg 3113 cbvralcsf 3160 cbvrexcsf 3161 cbvreucsf 3162 cbvrabcsf 3163 sbss 3572 disjiun 4046 sbcbrg 4106 cbvopab1 4125 cbvmpt 4147 tfis2f 4640 cbviota 5246 relelfvdm 5621 nfvres 5623 cbvriota 5923 bezoutlemnewy 12392 bezoutlemmain 12394 |
| Copyright terms: Public domain | W3C validator |