Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-el2oss1o GIF version

Theorem bj-el2oss1o 16096
Description: Shorter proof of el2oss1o 6587 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-el2oss1o (𝐴 ∈ 2o𝐴 ⊆ 1o)

Proof of Theorem bj-el2oss1o
StepHypRef Expression
1 1on 6567 . . . 4 1o ∈ On
21ontrci 4517 . . 3 Tr 1o
3 trsucss 4513 . . 3 (Tr 1o → (𝐴 ∈ suc 1o𝐴 ⊆ 1o))
42, 3ax-mp 5 . 2 (𝐴 ∈ suc 1o𝐴 ⊆ 1o)
5 df-2o 6561 . 2 2o = suc 1o
64, 5eleq2s 2324 1 (𝐴 ∈ 2o𝐴 ⊆ 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wss 3197  Tr wtr 4181  suc csuc 4455  1oc1o 6553  2oc2o 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461  df-1o 6560  df-2o 6561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator