| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-el2oss1o | GIF version | ||
| Description: Shorter proof of el2oss1o 6529 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-el2oss1o | ⊢ (𝐴 ∈ 2o → 𝐴 ⊆ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6509 | . . . 4 ⊢ 1o ∈ On | |
| 2 | 1 | ontrci 4474 | . . 3 ⊢ Tr 1o |
| 3 | trsucss 4470 | . . 3 ⊢ (Tr 1o → (𝐴 ∈ suc 1o → 𝐴 ⊆ 1o)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ suc 1o → 𝐴 ⊆ 1o) |
| 5 | df-2o 6503 | . 2 ⊢ 2o = suc 1o | |
| 6 | 4, 5 | eleq2s 2300 | 1 ⊢ (𝐴 ∈ 2o → 𝐴 ⊆ 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ⊆ wss 3166 Tr wtr 4142 suc csuc 4412 1oc1o 6495 2oc2o 6496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-1o 6502 df-2o 6503 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |