![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-el2oss1o | GIF version |
Description: Shorter proof of el2oss1o 6496 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-el2oss1o | ⊢ (𝐴 ∈ 2o → 𝐴 ⊆ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6476 | . . . 4 ⊢ 1o ∈ On | |
2 | 1 | ontrci 4458 | . . 3 ⊢ Tr 1o |
3 | trsucss 4454 | . . 3 ⊢ (Tr 1o → (𝐴 ∈ suc 1o → 𝐴 ⊆ 1o)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ suc 1o → 𝐴 ⊆ 1o) |
5 | df-2o 6470 | . 2 ⊢ 2o = suc 1o | |
6 | 4, 5 | eleq2s 2288 | 1 ⊢ (𝐴 ∈ 2o → 𝐴 ⊆ 1o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ⊆ wss 3153 Tr wtr 4127 suc csuc 4396 1oc1o 6462 2oc2o 6463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 df-1o 6469 df-2o 6470 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |