| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-el2oss1o | GIF version | ||
| Description: Shorter proof of el2oss1o 6510 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-el2oss1o | ⊢ (𝐴 ∈ 2o → 𝐴 ⊆ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6490 | . . . 4 ⊢ 1o ∈ On | |
| 2 | 1 | ontrci 4463 | . . 3 ⊢ Tr 1o |
| 3 | trsucss 4459 | . . 3 ⊢ (Tr 1o → (𝐴 ∈ suc 1o → 𝐴 ⊆ 1o)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ suc 1o → 𝐴 ⊆ 1o) |
| 5 | df-2o 6484 | . 2 ⊢ 2o = suc 1o | |
| 6 | 4, 5 | eleq2s 2291 | 1 ⊢ (𝐴 ∈ 2o → 𝐴 ⊆ 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ⊆ wss 3157 Tr wtr 4132 suc csuc 4401 1oc1o 6476 2oc2o 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-1o 6483 df-2o 6484 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |