| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvalv1 | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbval 1768 with a disjoint variable condition. See cbvalvw 1934 for a version with two disjoint variable conditions, and cbvalv 1932 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
| cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
| cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvalv1 | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalv1.nf1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvalv1.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvalv1.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | biimpd 144 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 5 | 1, 2, 4 | cbv3v 1758 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| 6 | 3 | biimprd 158 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
| 7 | 6 | equcoms 1722 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) |
| 8 | 2, 1, 7 | cbv3v 1758 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) |
| 9 | 5, 8 | impbii 126 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: cbvralfw 2719 |
| Copyright terms: Public domain | W3C validator |