ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvalv1 GIF version

Theorem cbvalv1 1744
Description: Rule used to change bound variables, using implicit substitution. Version of cbval 1747 with a disjoint variable condition. See cbvalvw 1912 for a version with two disjoint variable conditions, and cbvalv 1910 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalv1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvalv1
StepHypRef Expression
1 cbvalv1.nf1 . . 3 𝑦𝜑
2 cbvalv1.nf2 . . 3 𝑥𝜓
3 cbvalv1.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43biimpd 143 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 4cbv3v 1737 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
63biimprd 157 . . . 4 (𝑥 = 𝑦 → (𝜓𝜑))
76equcoms 1701 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
82, 1, 7cbv3v 1737 . 2 (∀𝑦𝜓 → ∀𝑥𝜑)
95, 8impbii 125 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346  wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  cbvralfw  2687
  Copyright terms: Public domain W3C validator