ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvalv1 GIF version

Theorem cbvalv1 1765
Description: Rule used to change bound variables, using implicit substitution. Version of cbval 1768 with a disjoint variable condition. See cbvalvw 1934 for a version with two disjoint variable conditions, and cbvalv 1932 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalv1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvalv1
StepHypRef Expression
1 cbvalv1.nf1 . . 3 𝑦𝜑
2 cbvalv1.nf2 . . 3 𝑥𝜓
3 cbvalv1.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43biimpd 144 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 4cbv3v 1758 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
63biimprd 158 . . . 4 (𝑥 = 𝑦 → (𝜓𝜑))
76equcoms 1722 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
82, 1, 7cbv3v 1758 . 2 (∀𝑦𝜓 → ∀𝑥𝜑)
95, 8impbii 126 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wnf 1474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475
This theorem is referenced by:  cbvralfw  2719
  Copyright terms: Public domain W3C validator