| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbv3h | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-May-2018.) | 
| Ref | Expression | 
|---|---|
| cbv3h.1 | ⊢ (𝜑 → ∀𝑦𝜑) | 
| cbv3h.2 | ⊢ (𝜓 → ∀𝑥𝜓) | 
| cbv3h.3 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbv3h | ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbv3h.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | nfi 1476 | . 2 ⊢ Ⅎ𝑦𝜑 | 
| 3 | cbv3h.2 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 4 | 3 | nfi 1476 | . 2 ⊢ Ⅎ𝑥𝜓 | 
| 5 | cbv3h.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 6 | 2, 4, 5 | cbv3 1756 | 1 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: cbvalh 1767 ax16 1827 ax16i 1872 cleqh 2296 | 
| Copyright terms: Public domain | W3C validator |