ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbv3h GIF version

Theorem cbv3h 1731
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-May-2018.)
Hypotheses
Ref Expression
cbv3h.1 (𝜑 → ∀𝑦𝜑)
cbv3h.2 (𝜓 → ∀𝑥𝜓)
cbv3h.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbv3h (∀𝑥𝜑 → ∀𝑦𝜓)

Proof of Theorem cbv3h
StepHypRef Expression
1 cbv3h.1 . . 3 (𝜑 → ∀𝑦𝜑)
21nfi 1450 . 2 𝑦𝜑
3 cbv3h.2 . . 3 (𝜓 → ∀𝑥𝜓)
43nfi 1450 . 2 𝑥𝜓
5 cbv3h.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
62, 4, 5cbv3 1730 1 (∀𝑥𝜑 → ∀𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  cbvalh  1741  ax16  1801  ax16i  1846  cleqh  2266
  Copyright terms: Public domain W3C validator