![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > chvarvv | GIF version |
Description: Version of chvarv 1953 with a disjoint variable condition. (Contributed by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
chvarvv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
chvarvv.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
chvarvv | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chvarvv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | spvv 1919 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
3 | chvarvv.2 | . 2 ⊢ 𝜑 | |
4 | 2, 3 | mpg 1462 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: prodfdivap 11690 |
Copyright terms: Public domain | W3C validator |