ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exdistr GIF version

Theorem exdistr 1897
Description: Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
exdistr (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
Distinct variable group:   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem exdistr
StepHypRef Expression
1 19.42v 1894 . 2 (∃𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓))
21exbii 1593 1 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exdistrv  1898  19.42vv  1899  3exdistr  1903  sbel2x  1986  sbexyz  1991  sbccomlem  3025  uniuni  4429  coass  5122  subhalfnqq  7355
  Copyright terms: Public domain W3C validator