ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfdivap GIF version

Theorem prodfdivap 11573
Description: The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
Hypotheses
Ref Expression
prodfdiv.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfdivap.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
prodfdivap.3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
prodfdivap.4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0)
prodfdivap.5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
Assertion
Ref Expression
prodfdivap (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁

Proof of Theorem prodfdivap
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prodfdiv.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 prodfdivap.3 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
3 elfzuz 10039 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
4 prodfdivap.4 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0)
53, 4sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) # 0)
6 eqid 2189 . . . . . 6 (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))) = (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))
7 fveq2 5530 . . . . . . 7 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
87oveq2d 5907 . . . . . 6 (𝑛 = 𝑘 → (1 / (𝐺𝑛)) = (1 / (𝐺𝑘)))
9 simpr 110 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
102, 4recclapd 8756 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 / (𝐺𝑘)) ∈ ℂ)
116, 8, 9, 10fvmptd3 5625 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
123, 11sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
1311, 10eqeltrd 2266 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) ∈ ℂ)
141, 2, 5, 12, 13prodfrecap 11572 . . 3 (𝜑 → (seq𝑀( · , (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))))‘𝑁) = (1 / (seq𝑀( · , 𝐺)‘𝑁)))
1514oveq2d 5907 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))))‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
16 prodfdivap.2 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
17 eleq1w 2250 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 ∈ (ℤ𝑀) ↔ 𝑛 ∈ (ℤ𝑀)))
1817anbi2d 464 . . . . . . . 8 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ (ℤ𝑀)) ↔ (𝜑𝑛 ∈ (ℤ𝑀))))
19 fveq2 5530 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐺𝑘) = (𝐺𝑛))
2019eleq1d 2258 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑛) ∈ ℂ))
2118, 20imbi12d 234 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) ∈ ℂ)))
2221, 2chvarvv 1920 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) ∈ ℂ)
2319breq1d 4028 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) # 0 ↔ (𝐺𝑛) # 0))
2418, 23imbi12d 234 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0) ↔ ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) # 0)))
2524, 4chvarvv 1920 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) # 0)
2622, 25recclapd 8756 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1 / (𝐺𝑛)) ∈ ℂ)
2726fmpttd 5687 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))):(ℤ𝑀)⟶ℂ)
2827ffvelcdmda 5667 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) ∈ ℂ)
2916, 2, 4divrecapd 8768 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘) / (𝐺𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
30 prodfdivap.5 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
3111oveq2d 5907 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘) · ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
3229, 30, 313eqtr4d 2232 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) · ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘)))
331, 16, 28, 32prod3fmul 11567 . 2 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))))‘𝑁)))
34 eqid 2189 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
35 eluzel2 9551 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
361, 35syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
3734, 36, 16prodf 11564 . . . 4 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
3837, 1ffvelcdmd 5668 . . 3 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
3934, 36, 2prodf 11564 . . . 4 (𝜑 → seq𝑀( · , 𝐺):(ℤ𝑀)⟶ℂ)
4039, 1ffvelcdmd 5668 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ∈ ℂ)
411, 2, 5prodfap0 11571 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) # 0)
4238, 40, 41divrecapd 8768 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
4315, 33, 423eqtr4d 2232 1 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160   class class class wbr 4018  cmpt 4079  cfv 5231  (class class class)co 5891  cc 7827  0cc0 7829  1c1 7830   · cmul 7834   # cap 8556   / cdiv 8647  cz 9271  cuz 9546  ...cfz 10026  seqcseq 10463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-n0 9195  df-z 9272  df-uz 9547  df-fz 10027  df-fzo 10161  df-seqfrec 10464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator