| Step | Hyp | Ref
 | Expression | 
| 1 |   | prodfdiv.1 | 
. . . 4
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 2 |   | prodfdivap.3 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) | 
| 3 |   | elfzuz 10096 | 
. . . . 5
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 4 |   | prodfdivap.4 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) # 0) | 
| 5 | 3, 4 | sylan2 286 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) # 0) | 
| 6 |   | eqid 2196 | 
. . . . . 6
⊢ (𝑛 ∈
(ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛))) = (𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛))) | 
| 7 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) | 
| 8 | 7 | oveq2d 5938 | 
. . . . . 6
⊢ (𝑛 = 𝑘 → (1 / (𝐺‘𝑛)) = (1 / (𝐺‘𝑘))) | 
| 9 |   | simpr 110 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 10 | 2, 4 | recclapd 8808 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (1 / (𝐺‘𝑘)) ∈ ℂ) | 
| 11 | 6, 8, 9, 10 | fvmptd3 5655 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛)))‘𝑘) = (1 / (𝐺‘𝑘))) | 
| 12 | 3, 11 | sylan2 286 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛)))‘𝑘) = (1 / (𝐺‘𝑘))) | 
| 13 | 11, 10 | eqeltrd 2273 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛)))‘𝑘) ∈ ℂ) | 
| 14 | 1, 2, 5, 12, 13 | prodfrecap 11711 | 
. . 3
⊢ (𝜑 → (seq𝑀( · , (𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛))))‘𝑁) = (1 / (seq𝑀( · , 𝐺)‘𝑁))) | 
| 15 | 14 | oveq2d 5938 | 
. 2
⊢ (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛))))‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁)))) | 
| 16 |   | prodfdivap.2 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) | 
| 17 |   | eleq1w 2257 | 
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝑘 ∈ (ℤ≥‘𝑀) ↔ 𝑛 ∈ (ℤ≥‘𝑀))) | 
| 18 | 17 | anbi2d 464 | 
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ↔ (𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)))) | 
| 19 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝐺‘𝑘) = (𝐺‘𝑛)) | 
| 20 | 19 | eleq1d 2265 | 
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐺‘𝑘) ∈ ℂ ↔ (𝐺‘𝑛) ∈ ℂ)) | 
| 21 | 18, 20 | imbi12d 234 | 
. . . . . . 7
⊢ (𝑘 = 𝑛 → (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑛) ∈ ℂ))) | 
| 22 | 21, 2 | chvarvv 1923 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑛) ∈ ℂ) | 
| 23 | 19 | breq1d 4043 | 
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐺‘𝑘) # 0 ↔ (𝐺‘𝑛) # 0)) | 
| 24 | 18, 23 | imbi12d 234 | 
. . . . . . 7
⊢ (𝑘 = 𝑛 → (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) # 0) ↔ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑛) # 0))) | 
| 25 | 24, 4 | chvarvv 1923 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑛) # 0) | 
| 26 | 22, 25 | recclapd 8808 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (1 / (𝐺‘𝑛)) ∈ ℂ) | 
| 27 | 26 | fmpttd 5717 | 
. . . 4
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛))):(ℤ≥‘𝑀)⟶ℂ) | 
| 28 | 27 | ffvelcdmda 5697 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛)))‘𝑘) ∈ ℂ) | 
| 29 | 16, 2, 4 | divrecapd 8820 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝑘) / (𝐺‘𝑘)) = ((𝐹‘𝑘) · (1 / (𝐺‘𝑘)))) | 
| 30 |   | prodfdivap.5 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) | 
| 31 | 11 | oveq2d 5938 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝑘) · ((𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛)))‘𝑘)) = ((𝐹‘𝑘) · (1 / (𝐺‘𝑘)))) | 
| 32 | 29, 30, 31 | 3eqtr4d 2239 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) · ((𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛)))‘𝑘))) | 
| 33 | 1, 16, 28, 32 | prod3fmul 11706 | 
. 2
⊢ (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛))))‘𝑁))) | 
| 34 |   | eqid 2196 | 
. . . . 5
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) | 
| 35 |   | eluzel2 9606 | 
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | 
| 36 | 1, 35 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 37 | 34, 36, 16 | prodf 11703 | 
. . . 4
⊢ (𝜑 → seq𝑀( · , 𝐹):(ℤ≥‘𝑀)⟶ℂ) | 
| 38 | 37, 1 | ffvelcdmd 5698 | 
. . 3
⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ) | 
| 39 | 34, 36, 2 | prodf 11703 | 
. . . 4
⊢ (𝜑 → seq𝑀( · , 𝐺):(ℤ≥‘𝑀)⟶ℂ) | 
| 40 | 39, 1 | ffvelcdmd 5698 | 
. . 3
⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ∈ ℂ) | 
| 41 | 1, 2, 5 | prodfap0 11710 | 
. . 3
⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) # 0) | 
| 42 | 38, 40, 41 | divrecapd 8820 | 
. 2
⊢ (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁)))) | 
| 43 | 15, 33, 42 | 3eqtr4d 2239 | 
1
⊢ (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁))) |