ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfdivap GIF version

Theorem prodfdivap 11729
Description: The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
Hypotheses
Ref Expression
prodfdiv.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfdivap.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
prodfdivap.3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
prodfdivap.4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0)
prodfdivap.5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
Assertion
Ref Expression
prodfdivap (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁

Proof of Theorem prodfdivap
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prodfdiv.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 prodfdivap.3 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
3 elfzuz 10113 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
4 prodfdivap.4 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0)
53, 4sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) # 0)
6 eqid 2196 . . . . . 6 (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))) = (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))
7 fveq2 5561 . . . . . . 7 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
87oveq2d 5941 . . . . . 6 (𝑛 = 𝑘 → (1 / (𝐺𝑛)) = (1 / (𝐺𝑘)))
9 simpr 110 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
102, 4recclapd 8825 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 / (𝐺𝑘)) ∈ ℂ)
116, 8, 9, 10fvmptd3 5658 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
123, 11sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
1311, 10eqeltrd 2273 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) ∈ ℂ)
141, 2, 5, 12, 13prodfrecap 11728 . . 3 (𝜑 → (seq𝑀( · , (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))))‘𝑁) = (1 / (seq𝑀( · , 𝐺)‘𝑁)))
1514oveq2d 5941 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))))‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
16 prodfdivap.2 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
17 eleq1w 2257 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 ∈ (ℤ𝑀) ↔ 𝑛 ∈ (ℤ𝑀)))
1817anbi2d 464 . . . . . . . 8 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ (ℤ𝑀)) ↔ (𝜑𝑛 ∈ (ℤ𝑀))))
19 fveq2 5561 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐺𝑘) = (𝐺𝑛))
2019eleq1d 2265 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑛) ∈ ℂ))
2118, 20imbi12d 234 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) ∈ ℂ)))
2221, 2chvarvv 1923 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) ∈ ℂ)
2319breq1d 4044 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) # 0 ↔ (𝐺𝑛) # 0))
2418, 23imbi12d 234 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0) ↔ ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) # 0)))
2524, 4chvarvv 1923 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) # 0)
2622, 25recclapd 8825 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1 / (𝐺𝑛)) ∈ ℂ)
2726fmpttd 5720 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))):(ℤ𝑀)⟶ℂ)
2827ffvelcdmda 5700 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) ∈ ℂ)
2916, 2, 4divrecapd 8837 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘) / (𝐺𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
30 prodfdivap.5 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
3111oveq2d 5941 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘) · ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
3229, 30, 313eqtr4d 2239 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) · ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘)))
331, 16, 28, 32prod3fmul 11723 . 2 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))))‘𝑁)))
34 eqid 2196 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
35 eluzel2 9623 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
361, 35syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
3734, 36, 16prodf 11720 . . . 4 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
3837, 1ffvelcdmd 5701 . . 3 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
3934, 36, 2prodf 11720 . . . 4 (𝜑 → seq𝑀( · , 𝐺):(ℤ𝑀)⟶ℂ)
4039, 1ffvelcdmd 5701 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ∈ ℂ)
411, 2, 5prodfap0 11727 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) # 0)
4238, 40, 41divrecapd 8837 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
4315, 33, 423eqtr4d 2239 1 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   class class class wbr 4034  cmpt 4095  cfv 5259  (class class class)co 5925  cc 7894  0cc0 7896  1c1 7897   · cmul 7901   # cap 8625   / cdiv 8716  cz 9343  cuz 9618  ...cfz 10100  seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator