ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfdivap GIF version

Theorem prodfdivap 12024
Description: The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
Hypotheses
Ref Expression
prodfdiv.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfdivap.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
prodfdivap.3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
prodfdivap.4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0)
prodfdivap.5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
Assertion
Ref Expression
prodfdivap (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁

Proof of Theorem prodfdivap
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prodfdiv.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 prodfdivap.3 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
3 elfzuz 10185 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
4 prodfdivap.4 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0)
53, 4sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) # 0)
6 eqid 2209 . . . . . 6 (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))) = (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))
7 fveq2 5603 . . . . . . 7 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
87oveq2d 5990 . . . . . 6 (𝑛 = 𝑘 → (1 / (𝐺𝑛)) = (1 / (𝐺𝑘)))
9 simpr 110 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
102, 4recclapd 8896 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 / (𝐺𝑘)) ∈ ℂ)
116, 8, 9, 10fvmptd3 5701 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
123, 11sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
1311, 10eqeltrd 2286 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) ∈ ℂ)
141, 2, 5, 12, 13prodfrecap 12023 . . 3 (𝜑 → (seq𝑀( · , (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))))‘𝑁) = (1 / (seq𝑀( · , 𝐺)‘𝑁)))
1514oveq2d 5990 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))))‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
16 prodfdivap.2 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
17 eleq1w 2270 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 ∈ (ℤ𝑀) ↔ 𝑛 ∈ (ℤ𝑀)))
1817anbi2d 464 . . . . . . . 8 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ (ℤ𝑀)) ↔ (𝜑𝑛 ∈ (ℤ𝑀))))
19 fveq2 5603 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐺𝑘) = (𝐺𝑛))
2019eleq1d 2278 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑛) ∈ ℂ))
2118, 20imbi12d 234 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) ∈ ℂ)))
2221, 2chvarvv 1935 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) ∈ ℂ)
2319breq1d 4072 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) # 0 ↔ (𝐺𝑛) # 0))
2418, 23imbi12d 234 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0) ↔ ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) # 0)))
2524, 4chvarvv 1935 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) # 0)
2622, 25recclapd 8896 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1 / (𝐺𝑛)) ∈ ℂ)
2726fmpttd 5763 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))):(ℤ𝑀)⟶ℂ)
2827ffvelcdmda 5743 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) ∈ ℂ)
2916, 2, 4divrecapd 8908 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘) / (𝐺𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
30 prodfdivap.5 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
3111oveq2d 5990 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘) · ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
3229, 30, 313eqtr4d 2252 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) · ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘)))
331, 16, 28, 32prod3fmul 12018 . 2 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))))‘𝑁)))
34 eqid 2209 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
35 eluzel2 9695 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
361, 35syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
3734, 36, 16prodf 12015 . . . 4 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
3837, 1ffvelcdmd 5744 . . 3 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
3934, 36, 2prodf 12015 . . . 4 (𝜑 → seq𝑀( · , 𝐺):(ℤ𝑀)⟶ℂ)
4039, 1ffvelcdmd 5744 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ∈ ℂ)
411, 2, 5prodfap0 12022 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) # 0)
4238, 40, 41divrecapd 8908 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
4315, 33, 423eqtr4d 2252 1 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180   class class class wbr 4062  cmpt 4124  cfv 5294  (class class class)co 5974  cc 7965  0cc0 7967  1c1 7968   · cmul 7972   # cap 8696   / cdiv 8787  cz 9414  cuz 9690  ...cfz 10172  seqcseq 10636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-fzo 10307  df-seqfrec 10637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator