ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfdivap GIF version

Theorem prodfdivap 11712
Description: The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
Hypotheses
Ref Expression
prodfdiv.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfdivap.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
prodfdivap.3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
prodfdivap.4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0)
prodfdivap.5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
Assertion
Ref Expression
prodfdivap (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁

Proof of Theorem prodfdivap
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prodfdiv.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 prodfdivap.3 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
3 elfzuz 10096 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
4 prodfdivap.4 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0)
53, 4sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) # 0)
6 eqid 2196 . . . . . 6 (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))) = (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))
7 fveq2 5558 . . . . . . 7 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
87oveq2d 5938 . . . . . 6 (𝑛 = 𝑘 → (1 / (𝐺𝑛)) = (1 / (𝐺𝑘)))
9 simpr 110 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
102, 4recclapd 8808 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 / (𝐺𝑘)) ∈ ℂ)
116, 8, 9, 10fvmptd3 5655 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
123, 11sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
1311, 10eqeltrd 2273 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) ∈ ℂ)
141, 2, 5, 12, 13prodfrecap 11711 . . 3 (𝜑 → (seq𝑀( · , (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))))‘𝑁) = (1 / (seq𝑀( · , 𝐺)‘𝑁)))
1514oveq2d 5938 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))))‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
16 prodfdivap.2 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
17 eleq1w 2257 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 ∈ (ℤ𝑀) ↔ 𝑛 ∈ (ℤ𝑀)))
1817anbi2d 464 . . . . . . . 8 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ (ℤ𝑀)) ↔ (𝜑𝑛 ∈ (ℤ𝑀))))
19 fveq2 5558 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐺𝑘) = (𝐺𝑛))
2019eleq1d 2265 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑛) ∈ ℂ))
2118, 20imbi12d 234 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) ∈ ℂ)))
2221, 2chvarvv 1923 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) ∈ ℂ)
2319breq1d 4043 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) # 0 ↔ (𝐺𝑛) # 0))
2418, 23imbi12d 234 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0) ↔ ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) # 0)))
2524, 4chvarvv 1923 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) # 0)
2622, 25recclapd 8808 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1 / (𝐺𝑛)) ∈ ℂ)
2726fmpttd 5717 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))):(ℤ𝑀)⟶ℂ)
2827ffvelcdmda 5697 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘) ∈ ℂ)
2916, 2, 4divrecapd 8820 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘) / (𝐺𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
30 prodfdivap.5 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
3111oveq2d 5938 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘) · ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
3229, 30, 313eqtr4d 2239 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) · ((𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛)))‘𝑘)))
331, 16, 28, 32prod3fmul 11706 . 2 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (ℤ𝑀) ↦ (1 / (𝐺𝑛))))‘𝑁)))
34 eqid 2196 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
35 eluzel2 9606 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
361, 35syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
3734, 36, 16prodf 11703 . . . 4 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
3837, 1ffvelcdmd 5698 . . 3 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
3934, 36, 2prodf 11703 . . . 4 (𝜑 → seq𝑀( · , 𝐺):(ℤ𝑀)⟶ℂ)
4039, 1ffvelcdmd 5698 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ∈ ℂ)
411, 2, 5prodfap0 11710 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) # 0)
4238, 40, 41divrecapd 8820 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
4315, 33, 423eqtr4d 2239 1 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   class class class wbr 4033  cmpt 4094  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   · cmul 7884   # cap 8608   / cdiv 8699  cz 9326  cuz 9601  ...cfz 10083  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator