| Step | Hyp | Ref
| Expression |
| 1 | | prodfdiv.1 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 2 | | prodfdivap.3 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) |
| 3 | | elfzuz 10113 |
. . . . 5
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 4 | | prodfdivap.4 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) # 0) |
| 5 | 3, 4 | sylan2 286 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) # 0) |
| 6 | | eqid 2196 |
. . . . . 6
⊢ (𝑛 ∈
(ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛))) = (𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛))) |
| 7 | | fveq2 5561 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) |
| 8 | 7 | oveq2d 5941 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (1 / (𝐺‘𝑛)) = (1 / (𝐺‘𝑘))) |
| 9 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 10 | 2, 4 | recclapd 8825 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (1 / (𝐺‘𝑘)) ∈ ℂ) |
| 11 | 6, 8, 9, 10 | fvmptd3 5658 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛)))‘𝑘) = (1 / (𝐺‘𝑘))) |
| 12 | 3, 11 | sylan2 286 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛)))‘𝑘) = (1 / (𝐺‘𝑘))) |
| 13 | 11, 10 | eqeltrd 2273 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛)))‘𝑘) ∈ ℂ) |
| 14 | 1, 2, 5, 12, 13 | prodfrecap 11728 |
. . 3
⊢ (𝜑 → (seq𝑀( · , (𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛))))‘𝑁) = (1 / (seq𝑀( · , 𝐺)‘𝑁))) |
| 15 | 14 | oveq2d 5941 |
. 2
⊢ (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛))))‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁)))) |
| 16 | | prodfdivap.2 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 17 | | eleq1w 2257 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝑘 ∈ (ℤ≥‘𝑀) ↔ 𝑛 ∈ (ℤ≥‘𝑀))) |
| 18 | 17 | anbi2d 464 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ↔ (𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)))) |
| 19 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝐺‘𝑘) = (𝐺‘𝑛)) |
| 20 | 19 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐺‘𝑘) ∈ ℂ ↔ (𝐺‘𝑛) ∈ ℂ)) |
| 21 | 18, 20 | imbi12d 234 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑛) ∈ ℂ))) |
| 22 | 21, 2 | chvarvv 1923 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑛) ∈ ℂ) |
| 23 | 19 | breq1d 4044 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐺‘𝑘) # 0 ↔ (𝐺‘𝑛) # 0)) |
| 24 | 18, 23 | imbi12d 234 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) # 0) ↔ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑛) # 0))) |
| 25 | 24, 4 | chvarvv 1923 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑛) # 0) |
| 26 | 22, 25 | recclapd 8825 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (1 / (𝐺‘𝑛)) ∈ ℂ) |
| 27 | 26 | fmpttd 5720 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛))):(ℤ≥‘𝑀)⟶ℂ) |
| 28 | 27 | ffvelcdmda 5700 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛)))‘𝑘) ∈ ℂ) |
| 29 | 16, 2, 4 | divrecapd 8837 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝑘) / (𝐺‘𝑘)) = ((𝐹‘𝑘) · (1 / (𝐺‘𝑘)))) |
| 30 | | prodfdivap.5 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) |
| 31 | 11 | oveq2d 5941 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝑘) · ((𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛)))‘𝑘)) = ((𝐹‘𝑘) · (1 / (𝐺‘𝑘)))) |
| 32 | 29, 30, 31 | 3eqtr4d 2239 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) · ((𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛)))‘𝑘))) |
| 33 | 1, 16, 28, 32 | prod3fmul 11723 |
. 2
⊢ (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (ℤ≥‘𝑀) ↦ (1 / (𝐺‘𝑛))))‘𝑁))) |
| 34 | | eqid 2196 |
. . . . 5
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
| 35 | | eluzel2 9623 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 36 | 1, 35 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 37 | 34, 36, 16 | prodf 11720 |
. . . 4
⊢ (𝜑 → seq𝑀( · , 𝐹):(ℤ≥‘𝑀)⟶ℂ) |
| 38 | 37, 1 | ffvelcdmd 5701 |
. . 3
⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ) |
| 39 | 34, 36, 2 | prodf 11720 |
. . . 4
⊢ (𝜑 → seq𝑀( · , 𝐺):(ℤ≥‘𝑀)⟶ℂ) |
| 40 | 39, 1 | ffvelcdmd 5701 |
. . 3
⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ∈ ℂ) |
| 41 | 1, 2, 5 | prodfap0 11727 |
. . 3
⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) # 0) |
| 42 | 38, 40, 41 | divrecapd 8837 |
. 2
⊢ (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁)))) |
| 43 | 15, 33, 42 | 3eqtr4d 2239 |
1
⊢ (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁))) |