ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cleljust GIF version

Theorem cleljust 2173
Description: When the class variables of set theory are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 2168 with the class variables in wcel 2167. (Contributed by NM, 28-Jan-2004.)
Assertion
Ref Expression
cleljust (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem cleljust
StepHypRef Expression
1 ax-17 1540 . . 3 (𝑥𝑦 → ∀𝑧 𝑥𝑦)
2 elequ1 2171 . . 3 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
31, 2equsex 1742 . 2 (∃𝑧(𝑧 = 𝑥𝑧𝑦) ↔ 𝑥𝑦)
43bicomi 132 1 (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-13 2169
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator