| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cleljust | GIF version | ||
| Description: When the class variables of set theory are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 2178 with the class variables in wcel 2177. (Contributed by NM, 28-Jan-2004.) |
| Ref | Expression |
|---|---|
| cleljust | ⊢ (𝑥 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 | . . 3 ⊢ (𝑥 ∈ 𝑦 → ∀𝑧 𝑥 ∈ 𝑦) | |
| 2 | elequ1 2181 | . . 3 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) | |
| 3 | 1, 2 | equsex 1752 | . 2 ⊢ (∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝑦) ↔ 𝑥 ∈ 𝑦) |
| 4 | 3 | bicomi 132 | 1 ⊢ (𝑥 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-13 2179 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |