ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsb1 GIF version

Theorem elsb1 2174
Description: Substitution for the first argument of the non-logical predicate in an atomic formula. See elsb2 2175 for substitution for the second argument. (Contributed by NM, 7-Nov-2006.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
elsb1 ([𝑦 / 𝑥]𝑥𝑧𝑦𝑧)
Distinct variable group:   𝑥,𝑧

Proof of Theorem elsb1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-17 1540 . . . . 5 (𝑥𝑧 → ∀𝑤 𝑥𝑧)
2 elequ1 2171 . . . . 5 (𝑤 = 𝑥 → (𝑤𝑧𝑥𝑧))
31, 2sbieh 1804 . . . 4 ([𝑥 / 𝑤]𝑤𝑧𝑥𝑧)
43sbbii 1779 . . 3 ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤𝑧 ↔ [𝑦 / 𝑥]𝑥𝑧)
5 ax-17 1540 . . . 4 (𝑤𝑧 → ∀𝑥 𝑤𝑧)
65sbco2h 1983 . . 3 ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤𝑧 ↔ [𝑦 / 𝑤]𝑤𝑧)
74, 6bitr3i 186 . 2 ([𝑦 / 𝑥]𝑥𝑧 ↔ [𝑦 / 𝑤]𝑤𝑧)
8 equsb1 1799 . . . 4 [𝑦 / 𝑤]𝑤 = 𝑦
9 elequ1 2171 . . . . 5 (𝑤 = 𝑦 → (𝑤𝑧𝑦𝑧))
109sbimi 1778 . . . 4 ([𝑦 / 𝑤]𝑤 = 𝑦 → [𝑦 / 𝑤](𝑤𝑧𝑦𝑧))
118, 10ax-mp 5 . . 3 [𝑦 / 𝑤](𝑤𝑧𝑦𝑧)
12 sbbi 1978 . . 3 ([𝑦 / 𝑤](𝑤𝑧𝑦𝑧) ↔ ([𝑦 / 𝑤]𝑤𝑧 ↔ [𝑦 / 𝑤]𝑦𝑧))
1311, 12mpbi 145 . 2 ([𝑦 / 𝑤]𝑤𝑧 ↔ [𝑦 / 𝑤]𝑦𝑧)
14 ax-17 1540 . . 3 (𝑦𝑧 → ∀𝑤 𝑦𝑧)
1514sbh 1790 . 2 ([𝑦 / 𝑤]𝑦𝑧𝑦𝑧)
167, 13, 153bitri 206 1 ([𝑦 / 𝑥]𝑥𝑧𝑦𝑧)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  cvjust  2191
  Copyright terms: Public domain W3C validator