| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsb1 | GIF version | ||
| Description: Substitution for the first argument of the non-logical predicate in an atomic formula. See elsb2 2183 for substitution for the second argument. (Contributed by NM, 7-Nov-2006.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| elsb1 | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1548 | . . . . 5 ⊢ (𝑥 ∈ 𝑧 → ∀𝑤 𝑥 ∈ 𝑧) | |
| 2 | elequ1 2179 | . . . . 5 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧)) | |
| 3 | 1, 2 | sbieh 1812 | . . . 4 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧) |
| 4 | 3 | sbbii 1787 | . . 3 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝑧 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝑧) |
| 5 | ax-17 1548 | . . . 4 ⊢ (𝑤 ∈ 𝑧 → ∀𝑥 𝑤 ∈ 𝑧) | |
| 6 | 5 | sbco2h 1991 | . . 3 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝑧 ↔ [𝑦 / 𝑤]𝑤 ∈ 𝑧) |
| 7 | 4, 6 | bitr3i 186 | . 2 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑧 ↔ [𝑦 / 𝑤]𝑤 ∈ 𝑧) |
| 8 | equsb1 1807 | . . . 4 ⊢ [𝑦 / 𝑤]𝑤 = 𝑦 | |
| 9 | elequ1 2179 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) | |
| 10 | 9 | sbimi 1786 | . . . 4 ⊢ ([𝑦 / 𝑤]𝑤 = 𝑦 → [𝑦 / 𝑤](𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
| 11 | 8, 10 | ax-mp 5 | . . 3 ⊢ [𝑦 / 𝑤](𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) |
| 12 | sbbi 1986 | . . 3 ⊢ ([𝑦 / 𝑤](𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) ↔ ([𝑦 / 𝑤]𝑤 ∈ 𝑧 ↔ [𝑦 / 𝑤]𝑦 ∈ 𝑧)) | |
| 13 | 11, 12 | mpbi 145 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝑧 ↔ [𝑦 / 𝑤]𝑦 ∈ 𝑧) |
| 14 | ax-17 1548 | . . 3 ⊢ (𝑦 ∈ 𝑧 → ∀𝑤 𝑦 ∈ 𝑧) | |
| 15 | 14 | sbh 1798 | . 2 ⊢ ([𝑦 / 𝑤]𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) |
| 16 | 7, 13, 15 | 3bitri 206 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 |
| This theorem is referenced by: cvjust 2199 |
| Copyright terms: Public domain | W3C validator |