![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elsb1 | GIF version |
Description: Substitution for the first argument of the non-logical predicate in an atomic formula. See elsb2 2156 for substitution for the second argument. (Contributed by NM, 7-Nov-2006.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
elsb1 | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1526 | . . . . 5 ⊢ (𝑥 ∈ 𝑧 → ∀𝑤 𝑥 ∈ 𝑧) | |
2 | elequ1 2152 | . . . . 5 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧)) | |
3 | 1, 2 | sbieh 1790 | . . . 4 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧) |
4 | 3 | sbbii 1765 | . . 3 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝑧 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝑧) |
5 | ax-17 1526 | . . . 4 ⊢ (𝑤 ∈ 𝑧 → ∀𝑥 𝑤 ∈ 𝑧) | |
6 | 5 | sbco2h 1964 | . . 3 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝑧 ↔ [𝑦 / 𝑤]𝑤 ∈ 𝑧) |
7 | 4, 6 | bitr3i 186 | . 2 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑧 ↔ [𝑦 / 𝑤]𝑤 ∈ 𝑧) |
8 | equsb1 1785 | . . . 4 ⊢ [𝑦 / 𝑤]𝑤 = 𝑦 | |
9 | elequ1 2152 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) | |
10 | 9 | sbimi 1764 | . . . 4 ⊢ ([𝑦 / 𝑤]𝑤 = 𝑦 → [𝑦 / 𝑤](𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
11 | 8, 10 | ax-mp 5 | . . 3 ⊢ [𝑦 / 𝑤](𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) |
12 | sbbi 1959 | . . 3 ⊢ ([𝑦 / 𝑤](𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) ↔ ([𝑦 / 𝑤]𝑤 ∈ 𝑧 ↔ [𝑦 / 𝑤]𝑦 ∈ 𝑧)) | |
13 | 11, 12 | mpbi 145 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝑧 ↔ [𝑦 / 𝑤]𝑦 ∈ 𝑧) |
14 | ax-17 1526 | . . 3 ⊢ (𝑦 ∈ 𝑧 → ∀𝑤 𝑦 ∈ 𝑧) | |
15 | 14 | sbh 1776 | . 2 ⊢ ([𝑦 / 𝑤]𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) |
16 | 7, 13, 15 | 3bitri 206 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 |
This theorem is referenced by: cvjust 2172 |
Copyright terms: Public domain | W3C validator |