ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cleljust Unicode version

Theorem cleljust 2182
Description: When the class variables of set theory are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 2177 with the class variables in wcel 2176. (Contributed by NM, 28-Jan-2004.)
Assertion
Ref Expression
cleljust  |-  ( x  e.  y  <->  E. z
( z  =  x  /\  z  e.  y ) )
Distinct variable groups:    x, z    y,
z

Proof of Theorem cleljust
StepHypRef Expression
1 ax-17 1549 . . 3  |-  ( x  e.  y  ->  A. z  x  e.  y )
2 elequ1 2180 . . 3  |-  ( z  =  x  ->  (
z  e.  y  <->  x  e.  y ) )
31, 2equsex 1751 . 2  |-  ( E. z ( z  =  x  /\  z  e.  y )  <->  x  e.  y )
43bicomi 132 1  |-  ( x  e.  y  <->  E. z
( z  =  x  /\  z  e.  y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-13 2178
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator