ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cleljust Unicode version

Theorem cleljust 2206
Description: When the class variables of set theory are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 2201 with the class variables in wcel 2200. (Contributed by NM, 28-Jan-2004.)
Assertion
Ref Expression
cleljust  |-  ( x  e.  y  <->  E. z
( z  =  x  /\  z  e.  y ) )
Distinct variable groups:    x, z    y,
z

Proof of Theorem cleljust
StepHypRef Expression
1 ax-17 1572 . . 3  |-  ( x  e.  y  ->  A. z  x  e.  y )
2 elequ1 2204 . . 3  |-  ( z  =  x  ->  (
z  e.  y  <->  x  e.  y ) )
31, 2equsex 1774 . 2  |-  ( E. z ( z  =  x  /\  z  e.  y )  <->  x  e.  y )
43bicomi 132 1  |-  ( x  e.  y  <->  E. z
( z  =  x  /\  z  e.  y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-13 2202
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator