ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cleljust Unicode version

Theorem cleljust 2181
Description: When the class variables of set theory are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 2176 with the class variables in wcel 2175. (Contributed by NM, 28-Jan-2004.)
Assertion
Ref Expression
cleljust  |-  ( x  e.  y  <->  E. z
( z  =  x  /\  z  e.  y ) )
Distinct variable groups:    x, z    y,
z

Proof of Theorem cleljust
StepHypRef Expression
1 ax-17 1548 . . 3  |-  ( x  e.  y  ->  A. z  x  e.  y )
2 elequ1 2179 . . 3  |-  ( z  =  x  ->  (
z  e.  y  <->  x  e.  y ) )
31, 2equsex 1750 . 2  |-  ( E. z ( z  =  x  /\  z  e.  y )  <->  x  e.  y )
43bicomi 132 1  |-  ( x  e.  y  <->  E. z
( z  =  x  /\  z  e.  y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-13 2177
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator