ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cleljust Unicode version

Theorem cleljust 1888
Description: When the class variables of set theory are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 1464 with the class variables in wcel 1463. (Contributed by NM, 28-Jan-2004.)
Assertion
Ref Expression
cleljust  |-  ( x  e.  y  <->  E. z
( z  =  x  /\  z  e.  y ) )
Distinct variable groups:    x, z    y,
z

Proof of Theorem cleljust
StepHypRef Expression
1 ax-17 1489 . . 3  |-  ( x  e.  y  ->  A. z  x  e.  y )
2 elequ1 1673 . . 3  |-  ( z  =  x  ->  (
z  e.  y  <->  x  e.  y ) )
31, 2equsex 1689 . 2  |-  ( E. z ( z  =  x  /\  z  e.  y )  <->  x  e.  y )
43bicomi 131 1  |-  ( x  e.  y  <->  E. z
( z  =  x  /\  z  e.  y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-4 1470  ax-13 1474  ax-17 1489  ax-i9 1493  ax-ial 1497
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator