| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elequ1 | GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| elequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-13 2169 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
| 2 | ax-13 2169 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | |
| 3 | 2 | equcoms 1722 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | 
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-17 1540 ax-i9 1544 ax-13 2169 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: cleljust 2173 elsb1 2174 dveel1 2176 nalset 4163 zfpow 4208 mss 4259 zfun 4469 pw2f1odclem 6895 ctssdc 7179 acfun 7274 ccfunen 7331 bj-nalset 15541 bj-nnelirr 15599 nninfsellemqall 15659 nninfomni 15663 | 
| Copyright terms: Public domain | W3C validator |