ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elequ1 GIF version

Theorem elequ1 2168
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elequ1 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))

Proof of Theorem elequ1
StepHypRef Expression
1 ax-13 2166 . 2 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
2 ax-13 2166 . . 3 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
32equcoms 1719 . 2 (𝑥 = 𝑦 → (𝑦𝑧𝑥𝑧))
41, 3impbid 129 1 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460  ax-ie2 1505  ax-8 1515  ax-17 1537  ax-i9 1541  ax-13 2166
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  cleljust  2170  elsb1  2171  dveel1  2173  nalset  4159  zfpow  4204  mss  4255  zfun  4465  pw2f1odclem  6890  ctssdc  7172  acfun  7267  ccfunen  7324  bj-nalset  15387  bj-nnelirr  15445  nninfsellemqall  15505  nninfomni  15509
  Copyright terms: Public domain W3C validator