ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elequ1 GIF version

Theorem elequ1 2204
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elequ1 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))

Proof of Theorem elequ1
StepHypRef Expression
1 ax-13 2202 . 2 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
2 ax-13 2202 . . 3 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
32equcoms 1754 . 2 (𝑥 = 𝑦 → (𝑦𝑧𝑥𝑧))
41, 3impbid 129 1 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1495  ax-ie2 1540  ax-8 1550  ax-17 1572  ax-i9 1576  ax-13 2202
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  cleljust  2206  elsb1  2207  dveel1  2209  nalset  4213  zfpow  4258  mss  4311  zfun  4522  pw2f1odclem  6983  ctssdc  7268  acfun  7377  ccfunen  7438  bj-nalset  16188  bj-nnelirr  16246  2omap  16290  pw1map  16292  nninfsellemqall  16312  nninfomni  16316
  Copyright terms: Public domain W3C validator