![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elequ1 | GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
elequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-13 2166 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
2 | ax-13 2166 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) | |
3 | 2 | equcoms 1719 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) |
4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ie2 1505 ax-8 1515 ax-17 1537 ax-i9 1541 ax-13 2166 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: cleljust 2170 elsb1 2171 dveel1 2173 nalset 4159 zfpow 4204 mss 4255 zfun 4465 pw2f1odclem 6890 ctssdc 7172 acfun 7267 ccfunen 7324 bj-nalset 15387 bj-nnelirr 15445 nninfsellemqall 15505 nninfomni 15509 |
Copyright terms: Public domain | W3C validator |