| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equsex | GIF version | ||
| Description: A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| equsex.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
| equsex.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsex | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsex.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | equsex.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | biimpa 296 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝜓) |
| 4 | 1, 3 | exlimih 1607 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → 𝜓) |
| 5 | a9e 1710 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 6 | idd 21 | . . . . 5 ⊢ (𝜓 → (𝑥 = 𝑦 → 𝑥 = 𝑦)) | |
| 7 | 2 | biimprcd 160 | . . . . 5 ⊢ (𝜓 → (𝑥 = 𝑦 → 𝜑)) |
| 8 | 6, 7 | jcad 307 | . . . 4 ⊢ (𝜓 → (𝑥 = 𝑦 → (𝑥 = 𝑦 ∧ 𝜑))) |
| 9 | 1, 8 | eximdh 1625 | . . 3 ⊢ (𝜓 → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| 10 | 5, 9 | mpi 15 | . 2 ⊢ (𝜓 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 11 | 4, 10 | impbii 126 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: cbvexv1 1766 cbvexh 1769 sb56 1900 sb10f 2014 cleljust 2173 |
| Copyright terms: Public domain | W3C validator |