![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pcprod | GIF version |
Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.) |
Ref | Expression |
---|---|
pcprod.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1)) |
Ref | Expression |
---|---|
pcprod | ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcprod.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1)) | |
2 | pccl 12282 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑛 pCnt 𝑁) ∈ ℕ0) | |
3 | 2 | ancoms 268 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0) |
4 | 3 | ralrimiva 2550 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0) |
5 | 4 | adantl 277 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0) |
6 | simpr 110 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
7 | simpl 109 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ ℙ) | |
8 | oveq1 5876 | . . . . . 6 ⊢ (𝑛 = 𝑝 → (𝑛 pCnt 𝑁) = (𝑝 pCnt 𝑁)) | |
9 | 1, 5, 6, 7, 8 | pcmpt 12324 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0)) |
10 | iftrue 3539 | . . . . . . 7 ⊢ (𝑝 ≤ 𝑁 → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) | |
11 | 10 | adantl 277 | . . . . . 6 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
12 | iffalse 3542 | . . . . . . . 8 ⊢ (¬ 𝑝 ≤ 𝑁 → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = 0) | |
13 | 12 | adantl 277 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = 0) |
14 | prmz 12094 | . . . . . . . . . 10 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
15 | dvdsle 11833 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ 𝑁 → 𝑝 ≤ 𝑁)) | |
16 | 14, 15 | sylan 283 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ 𝑁 → 𝑝 ≤ 𝑁)) |
17 | 16 | con3dimp 635 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → ¬ 𝑝 ∥ 𝑁) |
18 | pceq0 12304 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝 ∥ 𝑁)) | |
19 | 18 | adantr 276 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝 ∥ 𝑁)) |
20 | 17, 19 | mpbird 167 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → (𝑝 pCnt 𝑁) = 0) |
21 | 13, 20 | eqtr4d 2213 | . . . . . 6 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
22 | 14 | adantr 276 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ ℤ) |
23 | 6 | nnzd 9363 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ) |
24 | zdcle 9318 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑝 ≤ 𝑁) | |
25 | 22, 23, 24 | syl2anc 411 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → DECID 𝑝 ≤ 𝑁) |
26 | exmiddc 836 | . . . . . . 7 ⊢ (DECID 𝑝 ≤ 𝑁 → (𝑝 ≤ 𝑁 ∨ ¬ 𝑝 ≤ 𝑁)) | |
27 | 25, 26 | syl 14 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 ≤ 𝑁 ∨ ¬ 𝑝 ≤ 𝑁)) |
28 | 11, 21, 27 | mpjaodan 798 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
29 | 9, 28 | eqtrd 2210 | . . . 4 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
30 | 29 | ancoms 268 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
31 | 30 | ralrimiva 2550 | . 2 ⊢ (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
32 | 1, 4 | pcmptcl 12323 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
33 | 32 | simprd 114 | . . . . 5 ⊢ (𝑁 ∈ ℕ → seq1( · , 𝐹):ℕ⟶ℕ) |
34 | ffvelcdm 5645 | . . . . 5 ⊢ ((seq1( · , 𝐹):ℕ⟶ℕ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℕ) | |
35 | 33, 34 | mpancom 422 | . . . 4 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ) |
36 | 35 | nnnn0d 9218 | . . 3 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ0) |
37 | nnnn0 9172 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
38 | pc11 12313 | . . 3 ⊢ (((seq1( · , 𝐹)‘𝑁) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))) | |
39 | 36, 37, 38 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))) |
40 | 31, 39 | mpbird 167 | 1 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ifcif 3534 class class class wbr 4000 ↦ cmpt 4061 ⟶wf 5208 ‘cfv 5212 (class class class)co 5869 0cc0 7802 1c1 7803 · cmul 7807 ≤ cle 7983 ℕcn 8908 ℕ0cn0 9165 ℤcz 9242 seqcseq 10431 ↑cexp 10505 ∥ cdvds 11778 ℙcprime 12090 pCnt cpc 12267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 ax-arch 7921 ax-caucvg 7922 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-isom 5221 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-frec 6386 df-1o 6411 df-2o 6412 df-er 6529 df-en 6735 df-fin 6737 df-sup 6977 df-inf 6978 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-3 8968 df-4 8969 df-n0 9166 df-xnn0 9229 df-z 9243 df-uz 9518 df-q 9609 df-rp 9641 df-fz 9996 df-fzo 10129 df-fl 10256 df-mod 10309 df-seqfrec 10432 df-exp 10506 df-cj 10835 df-re 10836 df-im 10837 df-rsqrt 10991 df-abs 10992 df-dvds 11779 df-gcd 11927 df-prm 12091 df-pc 12268 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |