| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcprod | GIF version | ||
| Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.) |
| Ref | Expression |
|---|---|
| pcprod.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1)) |
| Ref | Expression |
|---|---|
| pcprod | ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcprod.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1)) | |
| 2 | pccl 12737 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑛 pCnt 𝑁) ∈ ℕ0) | |
| 3 | 2 | ancoms 268 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0) |
| 4 | 3 | ralrimiva 2581 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0) |
| 5 | 4 | adantl 277 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0) |
| 6 | simpr 110 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 7 | simpl 109 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ ℙ) | |
| 8 | oveq1 5974 | . . . . . 6 ⊢ (𝑛 = 𝑝 → (𝑛 pCnt 𝑁) = (𝑝 pCnt 𝑁)) | |
| 9 | 1, 5, 6, 7, 8 | pcmpt 12781 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0)) |
| 10 | iftrue 3584 | . . . . . . 7 ⊢ (𝑝 ≤ 𝑁 → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) | |
| 11 | 10 | adantl 277 | . . . . . 6 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
| 12 | iffalse 3587 | . . . . . . . 8 ⊢ (¬ 𝑝 ≤ 𝑁 → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = 0) | |
| 13 | 12 | adantl 277 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = 0) |
| 14 | prmz 12548 | . . . . . . . . . 10 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
| 15 | dvdsle 12270 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ 𝑁 → 𝑝 ≤ 𝑁)) | |
| 16 | 14, 15 | sylan 283 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ 𝑁 → 𝑝 ≤ 𝑁)) |
| 17 | 16 | con3dimp 636 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → ¬ 𝑝 ∥ 𝑁) |
| 18 | pceq0 12760 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝 ∥ 𝑁)) | |
| 19 | 18 | adantr 276 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝 ∥ 𝑁)) |
| 20 | 17, 19 | mpbird 167 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → (𝑝 pCnt 𝑁) = 0) |
| 21 | 13, 20 | eqtr4d 2243 | . . . . . 6 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
| 22 | 14 | adantr 276 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ ℤ) |
| 23 | 6 | nnzd 9529 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ) |
| 24 | zdcle 9484 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑝 ≤ 𝑁) | |
| 25 | 22, 23, 24 | syl2anc 411 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → DECID 𝑝 ≤ 𝑁) |
| 26 | exmiddc 838 | . . . . . . 7 ⊢ (DECID 𝑝 ≤ 𝑁 → (𝑝 ≤ 𝑁 ∨ ¬ 𝑝 ≤ 𝑁)) | |
| 27 | 25, 26 | syl 14 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 ≤ 𝑁 ∨ ¬ 𝑝 ≤ 𝑁)) |
| 28 | 11, 21, 27 | mpjaodan 800 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
| 29 | 9, 28 | eqtrd 2240 | . . . 4 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
| 30 | 29 | ancoms 268 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
| 31 | 30 | ralrimiva 2581 | . 2 ⊢ (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
| 32 | 1, 4 | pcmptcl 12780 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
| 33 | 32 | simprd 114 | . . . . 5 ⊢ (𝑁 ∈ ℕ → seq1( · , 𝐹):ℕ⟶ℕ) |
| 34 | ffvelcdm 5736 | . . . . 5 ⊢ ((seq1( · , 𝐹):ℕ⟶ℕ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℕ) | |
| 35 | 33, 34 | mpancom 422 | . . . 4 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ) |
| 36 | 35 | nnnn0d 9383 | . . 3 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ0) |
| 37 | nnnn0 9337 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 38 | pc11 12769 | . . 3 ⊢ (((seq1( · , 𝐹)‘𝑁) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))) | |
| 39 | 36, 37, 38 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))) |
| 40 | 31, 39 | mpbird 167 | 1 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2178 ∀wral 2486 ifcif 3579 class class class wbr 4059 ↦ cmpt 4121 ⟶wf 5286 ‘cfv 5290 (class class class)co 5967 0cc0 7960 1c1 7961 · cmul 7965 ≤ cle 8143 ℕcn 9071 ℕ0cn0 9330 ℤcz 9407 seqcseq 10629 ↑cexp 10720 ∥ cdvds 12213 ℙcprime 12544 pCnt cpc 12722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-2o 6526 df-er 6643 df-en 6851 df-fin 6853 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-xnn0 9394 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-dvds 12214 df-gcd 12390 df-prm 12545 df-pc 12723 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |