ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcprod GIF version

Theorem pcprod 12869
Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypothesis
Ref Expression
pcprod.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
pcprod (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁)
Distinct variable group:   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem pcprod
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 pcprod.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1))
2 pccl 12822 . . . . . . . . 9 ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
32ancoms 268 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
43ralrimiva 2603 . . . . . . 7 (𝑁 ∈ ℕ → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0)
54adantl 277 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0)
6 simpr 110 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
7 simpl 109 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ ℙ)
8 oveq1 6008 . . . . . 6 (𝑛 = 𝑝 → (𝑛 pCnt 𝑁) = (𝑝 pCnt 𝑁))
91, 5, 6, 7, 8pcmpt 12866 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑝𝑁, (𝑝 pCnt 𝑁), 0))
10 iftrue 3607 . . . . . . 7 (𝑝𝑁 → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
1110adantl 277 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
12 iffalse 3610 . . . . . . . 8 𝑝𝑁 → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = 0)
1312adantl 277 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = 0)
14 prmz 12633 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
15 dvdsle 12355 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝𝑁𝑝𝑁))
1614, 15sylan 283 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝𝑁𝑝𝑁))
1716con3dimp 638 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → ¬ 𝑝𝑁)
18 pceq0 12845 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝𝑁))
1918adantr 276 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝𝑁))
2017, 19mpbird 167 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → (𝑝 pCnt 𝑁) = 0)
2113, 20eqtr4d 2265 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
2214adantr 276 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ ℤ)
236nnzd 9568 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
24 zdcle 9523 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑝𝑁)
2522, 23, 24syl2anc 411 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → DECID 𝑝𝑁)
26 exmiddc 841 . . . . . . 7 (DECID 𝑝𝑁 → (𝑝𝑁 ∨ ¬ 𝑝𝑁))
2725, 26syl 14 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝𝑁 ∨ ¬ 𝑝𝑁))
2811, 21, 27mpjaodan 803 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
299, 28eqtrd 2262 . . . 4 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
3029ancoms 268 . . 3 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
3130ralrimiva 2603 . 2 (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
321, 4pcmptcl 12865 . . . . . 6 (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
3332simprd 114 . . . . 5 (𝑁 ∈ ℕ → seq1( · , 𝐹):ℕ⟶ℕ)
34 ffvelcdm 5768 . . . . 5 ((seq1( · , 𝐹):ℕ⟶ℕ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
3533, 34mpancom 422 . . . 4 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
3635nnnn0d 9422 . . 3 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ0)
37 nnnn0 9376 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
38 pc11 12854 . . 3 (((seq1( · , 𝐹)‘𝑁) ∈ ℕ0𝑁 ∈ ℕ0) → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)))
3936, 37, 38syl2anc 411 . 2 (𝑁 ∈ ℕ → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)))
4031, 39mpbird 167 1 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  ifcif 3602   class class class wbr 4083  cmpt 4145  wf 5314  cfv 5318  (class class class)co 6001  0cc0 7999  1c1 8000   · cmul 8004  cle 8182  cn 9110  0cn0 9369  cz 9446  seqcseq 10669  cexp 10760  cdvds 12298  cprime 12629   pCnt cpc 12807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-2o 6563  df-er 6680  df-en 6888  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-xnn0 9433  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475  df-prm 12630  df-pc 12808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator