ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelss GIF version

Theorem nelss 3244
Description: Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015.)
Assertion
Ref Expression
nelss ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵𝐶)

Proof of Theorem nelss
StepHypRef Expression
1 ssel 3177 . . 3 (𝐵𝐶 → (𝐴𝐵𝐴𝐶))
21com12 30 . 2 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))
32con3dimp 636 1 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2167  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator