ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnoddn2prmb GIF version

Theorem nnoddn2prmb 12793
Description: A number is a prime number not equal to 2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
nnoddn2prmb (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁))

Proof of Theorem nnoddn2prmb
StepHypRef Expression
1 eldifi 3326 . . 3 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℙ)
2 oddn2prm 12792 . . 3 (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁)
31, 2jca 306 . 2 (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁))
4 simpl 109 . . 3 ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℙ)
5 z2even 12433 . . . . . . . 8 2 ∥ 2
6 breq2 4087 . . . . . . . 8 (𝑁 = 2 → (2 ∥ 𝑁 ↔ 2 ∥ 2))
75, 6mpbiri 168 . . . . . . 7 (𝑁 = 2 → 2 ∥ 𝑁)
87a1i 9 . . . . . 6 (𝑁 ∈ ℙ → (𝑁 = 2 → 2 ∥ 𝑁))
98con3dimp 638 . . . . 5 ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → ¬ 𝑁 = 2)
109neqned 2407 . . . 4 ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ≠ 2)
11 nelsn 3701 . . . 4 (𝑁 ≠ 2 → ¬ 𝑁 ∈ {2})
1210, 11syl 14 . . 3 ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → ¬ 𝑁 ∈ {2})
134, 12eldifd 3207 . 2 ((𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ (ℙ ∖ {2}))
143, 13impbii 126 1 (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  cdif 3194  {csn 3666   class class class wbr 4083  2c2 9169  cdvds 12306  cprime 12637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-prm 12638
This theorem is referenced by:  2lgslem1  15778  2lgs  15791
  Copyright terms: Public domain W3C validator