| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fiinfnf1o | GIF version | ||
| Description: There is no bijection between a finite set and an infinite set. By infnfi 7057 the theorem would also hold if "infinite" were expressed as ω ≼ 𝐵. (Contributed by Alexander van der Vekens, 25-Dec-2017.) |
| Ref | Expression |
|---|---|
| fiinfnf1o | ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofi 7110 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐵 ∈ Fin) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ Fin)) |
| 3 | 2 | exlimdv 1865 | . 2 ⊢ (𝐴 ∈ Fin → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ Fin)) |
| 4 | 3 | con3dimp 638 | 1 ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∃wex 1538 ∈ wcel 2200 –1-1-onto→wf1o 5317 Fincfn 6887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-er 6680 df-en 6888 df-fin 6890 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |