ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninf GIF version

Theorem nnnninf 7126
Description: Elements of corresponding to natural numbers. The natural number 𝑁 corresponds to a sequence of 𝑁 ones followed by zeroes. This can be strengthened to include infinity, see nnnninf2 7127. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
nnnninf (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Distinct variable group:   𝑖,𝑁

Proof of Theorem nnnninf
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2o 6445 . . . . . 6 1o ∈ 2o
21a1i 9 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → 1o ∈ 2o)
3 0lt2o 6444 . . . . . 6 ∅ ∈ 2o
43a1i 9 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → ∅ ∈ 2o)
5 nndcel 6503 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑖𝑁)
65ancoms 268 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → DECID 𝑖𝑁)
72, 4, 6ifcldcd 3572 . . . 4 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → if(𝑖𝑁, 1o, ∅) ∈ 2o)
87fmpttd 5673 . . 3 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)):ω⟶2o)
9 2onn 6524 . . . . 5 2o ∈ ω
109elexi 2751 . . . 4 2o ∈ V
11 omex 4594 . . . 4 ω ∈ V
1210, 11elmap 6679 . . 3 ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)):ω⟶2o)
138, 12sylibr 134 . 2 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω))
14 ssid 3177 . . . . . . . . 9 1o ⊆ 1o
15 iftrue 3541 . . . . . . . . . . 11 (suc 𝑗𝑁 → if(suc 𝑗𝑁, 1o, ∅) = 1o)
1615sseq1d 3186 . . . . . . . . . 10 (suc 𝑗𝑁 → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ 1o ⊆ 1o))
1716adantl 277 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ suc 𝑗𝑁) → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ 1o ⊆ 1o))
1814, 17mpbiri 168 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ suc 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
19 0ss 3463 . . . . . . . . 9 ∅ ⊆ 1o
20 iffalse 3544 . . . . . . . . . . 11 (¬ suc 𝑗𝑁 → if(suc 𝑗𝑁, 1o, ∅) = ∅)
2120sseq1d 3186 . . . . . . . . . 10 (¬ suc 𝑗𝑁 → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ ∅ ⊆ 1o))
2221adantl 277 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ suc 𝑗𝑁) → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ ∅ ⊆ 1o))
2319, 22mpbiri 168 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ suc 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
24 peano2 4596 . . . . . . . . . . 11 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
2524adantl 277 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → suc 𝑗 ∈ ω)
26 simpl 109 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 𝑁 ∈ ω)
27 nndcel 6503 . . . . . . . . . 10 ((suc 𝑗 ∈ ω ∧ 𝑁 ∈ ω) → DECID suc 𝑗𝑁)
2825, 26, 27syl2anc 411 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → DECID suc 𝑗𝑁)
29 exmiddc 836 . . . . . . . . 9 (DECID suc 𝑗𝑁 → (suc 𝑗𝑁 ∨ ¬ suc 𝑗𝑁))
3028, 29syl 14 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (suc 𝑗𝑁 ∨ ¬ suc 𝑗𝑁))
3118, 23, 30mpjaodan 798 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
3231adantr 276 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
33 iftrue 3541 . . . . . . 7 (𝑗𝑁 → if(𝑗𝑁, 1o, ∅) = 1o)
3433adantl 277 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(𝑗𝑁, 1o, ∅) = 1o)
3532, 34sseqtrrd 3196 . . . . 5 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
36 ssid 3177 . . . . . . 7 ∅ ⊆ ∅
3736a1i 9 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → ∅ ⊆ ∅)
38 nnord 4613 . . . . . . . . . . . 12 (𝑁 ∈ ω → Ord 𝑁)
39 ordtr 4380 . . . . . . . . . . . 12 (Ord 𝑁 → Tr 𝑁)
4038, 39syl 14 . . . . . . . . . . 11 (𝑁 ∈ ω → Tr 𝑁)
41 trsuc 4424 . . . . . . . . . . 11 ((Tr 𝑁 ∧ suc 𝑗𝑁) → 𝑗𝑁)
4240, 41sylan 283 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ suc 𝑗𝑁) → 𝑗𝑁)
4342ex 115 . . . . . . . . 9 (𝑁 ∈ ω → (suc 𝑗𝑁𝑗𝑁))
4443adantr 276 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (suc 𝑗𝑁𝑗𝑁))
4544con3dimp 635 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → ¬ suc 𝑗𝑁)
4645, 20syl 14 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) = ∅)
47 iffalse 3544 . . . . . . 7 𝑗𝑁 → if(𝑗𝑁, 1o, ∅) = ∅)
4847adantl 277 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(𝑗𝑁, 1o, ∅) = ∅)
4937, 46, 483sstr4d 3202 . . . . 5 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
50 nndcel 6503 . . . . . . 7 ((𝑗 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑗𝑁)
5150ancoms 268 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → DECID 𝑗𝑁)
52 exmiddc 836 . . . . . 6 (DECID 𝑗𝑁 → (𝑗𝑁 ∨ ¬ 𝑗𝑁))
5351, 52syl 14 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (𝑗𝑁 ∨ ¬ 𝑗𝑁))
5435, 49, 53mpjaodan 798 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
551a1i 9 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 1o ∈ 2o)
563a1i 9 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ∈ 2o)
5755, 56, 28ifcldcd 3572 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ∈ 2o)
58 eleq1 2240 . . . . . . 7 (𝑖 = suc 𝑗 → (𝑖𝑁 ↔ suc 𝑗𝑁))
5958ifbid 3557 . . . . . 6 (𝑖 = suc 𝑗 → if(𝑖𝑁, 1o, ∅) = if(suc 𝑗𝑁, 1o, ∅))
60 eqid 2177 . . . . . 6 (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))
6159, 60fvmptg 5594 . . . . 5 ((suc 𝑗 ∈ ω ∧ if(suc 𝑗𝑁, 1o, ∅) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) = if(suc 𝑗𝑁, 1o, ∅))
6225, 57, 61syl2anc 411 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) = if(suc 𝑗𝑁, 1o, ∅))
63 simpr 110 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
6455, 56, 51ifcldcd 3572 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(𝑗𝑁, 1o, ∅) ∈ 2o)
65 eleq1 2240 . . . . . . 7 (𝑖 = 𝑗 → (𝑖𝑁𝑗𝑁))
6665ifbid 3557 . . . . . 6 (𝑖 = 𝑗 → if(𝑖𝑁, 1o, ∅) = if(𝑗𝑁, 1o, ∅))
6766, 60fvmptg 5594 . . . . 5 ((𝑗 ∈ ω ∧ if(𝑗𝑁, 1o, ∅) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
6863, 64, 67syl2anc 411 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
6954, 62, 683sstr4d 3202 . . 3 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
7069ralrimiva 2550 . 2 (𝑁 ∈ ω → ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
71 fveq1 5516 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗))
72 fveq1 5516 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (𝑓𝑗) = ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
7371, 72sseq12d 3188 . . . 4 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
7473ralbidv 2477 . . 3 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
75 df-nninf 7121 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
7674, 75elrab2 2898 . 2 ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ ↔ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
7713, 70, 76sylanbrc 417 1 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  wss 3131  c0 3424  ifcif 3536  cmpt 4066  Tr wtr 4103  Ord word 4364  suc csuc 4367  ωcom 4591  wf 5214  cfv 5218  (class class class)co 5877  1oc1o 6412  2oc2o 6413  𝑚 cmap 6650  xnninf 7120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1o 6419  df-2o 6420  df-map 6652  df-nninf 7121
This theorem is referenced by:  nnnninf2  7127  fnn0nninf  10439  nninfsellemdc  14798  nninfsellemqall  14803  nninffeq  14808
  Copyright terms: Public domain W3C validator