| Step | Hyp | Ref
| Expression |
| 1 | | 1lt2o 6500 |
. . . . . 6
⊢
1o ∈ 2o |
| 2 | 1 | a1i 9 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) →
1o ∈ 2o) |
| 3 | | 0lt2o 6499 |
. . . . . 6
⊢ ∅
∈ 2o |
| 4 | 3 | a1i 9 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → ∅
∈ 2o) |
| 5 | | nndcel 6558 |
. . . . . 6
⊢ ((𝑖 ∈ ω ∧ 𝑁 ∈ ω) →
DECID 𝑖
∈ 𝑁) |
| 6 | 5 | ancoms 268 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) →
DECID 𝑖
∈ 𝑁) |
| 7 | 2, 4, 6 | ifcldcd 3597 |
. . . 4
⊢ ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → if(𝑖 ∈ 𝑁, 1o, ∅) ∈
2o) |
| 8 | 7 | fmpttd 5717 |
. . 3
⊢ (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o,
∅)):ω⟶2o) |
| 9 | | 2onn 6579 |
. . . . 5
⊢
2o ∈ ω |
| 10 | 9 | elexi 2775 |
. . . 4
⊢
2o ∈ V |
| 11 | | omex 4629 |
. . . 4
⊢ ω
∈ V |
| 12 | 10, 11 | elmap 6736 |
. . 3
⊢ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈
(2o ↑𝑚 ω) ↔ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o,
∅)):ω⟶2o) |
| 13 | 8, 12 | sylibr 134 |
. 2
⊢ (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈
(2o ↑𝑚 ω)) |
| 14 | | ssid 3203 |
. . . . . . . . 9
⊢
1o ⊆ 1o |
| 15 | | iftrue 3566 |
. . . . . . . . . . 11
⊢ (suc
𝑗 ∈ 𝑁 → if(suc 𝑗 ∈ 𝑁, 1o, ∅) =
1o) |
| 16 | 15 | sseq1d 3212 |
. . . . . . . . . 10
⊢ (suc
𝑗 ∈ 𝑁 → (if(suc 𝑗 ∈ 𝑁, 1o, ∅) ⊆
1o ↔ 1o ⊆ 1o)) |
| 17 | 16 | adantl 277 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ suc 𝑗 ∈ 𝑁) → (if(suc 𝑗 ∈ 𝑁, 1o, ∅) ⊆
1o ↔ 1o ⊆ 1o)) |
| 18 | 14, 17 | mpbiri 168 |
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ suc 𝑗 ∈ 𝑁) → if(suc 𝑗 ∈ 𝑁, 1o, ∅) ⊆
1o) |
| 19 | | 0ss 3489 |
. . . . . . . . 9
⊢ ∅
⊆ 1o |
| 20 | | iffalse 3569 |
. . . . . . . . . . 11
⊢ (¬
suc 𝑗 ∈ 𝑁 → if(suc 𝑗 ∈ 𝑁, 1o, ∅) =
∅) |
| 21 | 20 | sseq1d 3212 |
. . . . . . . . . 10
⊢ (¬
suc 𝑗 ∈ 𝑁 → (if(suc 𝑗 ∈ 𝑁, 1o, ∅) ⊆
1o ↔ ∅ ⊆ 1o)) |
| 22 | 21 | adantl 277 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ suc
𝑗 ∈ 𝑁) → (if(suc 𝑗 ∈ 𝑁, 1o, ∅) ⊆
1o ↔ ∅ ⊆ 1o)) |
| 23 | 19, 22 | mpbiri 168 |
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ suc
𝑗 ∈ 𝑁) → if(suc 𝑗 ∈ 𝑁, 1o, ∅) ⊆
1o) |
| 24 | | peano2 4631 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ω → suc 𝑗 ∈
ω) |
| 25 | 24 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → suc
𝑗 ∈
ω) |
| 26 | | simpl 109 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 𝑁 ∈
ω) |
| 27 | | nndcel 6558 |
. . . . . . . . . 10
⊢ ((suc
𝑗 ∈ ω ∧
𝑁 ∈ ω) →
DECID suc 𝑗
∈ 𝑁) |
| 28 | 25, 26, 27 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) →
DECID suc 𝑗
∈ 𝑁) |
| 29 | | exmiddc 837 |
. . . . . . . . 9
⊢
(DECID suc 𝑗 ∈ 𝑁 → (suc 𝑗 ∈ 𝑁 ∨ ¬ suc 𝑗 ∈ 𝑁)) |
| 30 | 28, 29 | syl 14 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (suc
𝑗 ∈ 𝑁 ∨ ¬ suc 𝑗 ∈ 𝑁)) |
| 31 | 18, 23, 30 | mpjaodan 799 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc
𝑗 ∈ 𝑁, 1o, ∅) ⊆
1o) |
| 32 | 31 | adantr 276 |
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗 ∈ 𝑁) → if(suc 𝑗 ∈ 𝑁, 1o, ∅) ⊆
1o) |
| 33 | | iftrue 3566 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑁 → if(𝑗 ∈ 𝑁, 1o, ∅) =
1o) |
| 34 | 33 | adantl 277 |
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗 ∈ 𝑁) → if(𝑗 ∈ 𝑁, 1o, ∅) =
1o) |
| 35 | 32, 34 | sseqtrrd 3222 |
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗 ∈ 𝑁) → if(suc 𝑗 ∈ 𝑁, 1o, ∅) ⊆ if(𝑗 ∈ 𝑁, 1o, ∅)) |
| 36 | | ssid 3203 |
. . . . . . 7
⊢ ∅
⊆ ∅ |
| 37 | 36 | a1i 9 |
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬
𝑗 ∈ 𝑁) → ∅ ⊆
∅) |
| 38 | | nnord 4648 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ω → Ord 𝑁) |
| 39 | | ordtr 4413 |
. . . . . . . . . . . 12
⊢ (Ord
𝑁 → Tr 𝑁) |
| 40 | 38, 39 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ω → Tr 𝑁) |
| 41 | | trsuc 4457 |
. . . . . . . . . . 11
⊢ ((Tr
𝑁 ∧ suc 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 42 | 40, 41 | sylan 283 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ω ∧ suc 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 43 | 42 | ex 115 |
. . . . . . . . 9
⊢ (𝑁 ∈ ω → (suc
𝑗 ∈ 𝑁 → 𝑗 ∈ 𝑁)) |
| 44 | 43 | adantr 276 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (suc
𝑗 ∈ 𝑁 → 𝑗 ∈ 𝑁)) |
| 45 | 44 | con3dimp 636 |
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬
𝑗 ∈ 𝑁) → ¬ suc 𝑗 ∈ 𝑁) |
| 46 | 45, 20 | syl 14 |
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬
𝑗 ∈ 𝑁) → if(suc 𝑗 ∈ 𝑁, 1o, ∅) =
∅) |
| 47 | | iffalse 3569 |
. . . . . . 7
⊢ (¬
𝑗 ∈ 𝑁 → if(𝑗 ∈ 𝑁, 1o, ∅) =
∅) |
| 48 | 47 | adantl 277 |
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬
𝑗 ∈ 𝑁) → if(𝑗 ∈ 𝑁, 1o, ∅) =
∅) |
| 49 | 37, 46, 48 | 3sstr4d 3228 |
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬
𝑗 ∈ 𝑁) → if(suc 𝑗 ∈ 𝑁, 1o, ∅) ⊆ if(𝑗 ∈ 𝑁, 1o, ∅)) |
| 50 | | nndcel 6558 |
. . . . . . 7
⊢ ((𝑗 ∈ ω ∧ 𝑁 ∈ ω) →
DECID 𝑗
∈ 𝑁) |
| 51 | 50 | ancoms 268 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) →
DECID 𝑗
∈ 𝑁) |
| 52 | | exmiddc 837 |
. . . . . 6
⊢
(DECID 𝑗 ∈ 𝑁 → (𝑗 ∈ 𝑁 ∨ ¬ 𝑗 ∈ 𝑁)) |
| 53 | 51, 52 | syl 14 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (𝑗 ∈ 𝑁 ∨ ¬ 𝑗 ∈ 𝑁)) |
| 54 | 35, 49, 53 | mpjaodan 799 |
. . . 4
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc
𝑗 ∈ 𝑁, 1o, ∅) ⊆ if(𝑗 ∈ 𝑁, 1o, ∅)) |
| 55 | 1 | a1i 9 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) →
1o ∈ 2o) |
| 56 | 3 | a1i 9 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ∅
∈ 2o) |
| 57 | 55, 56, 28 | ifcldcd 3597 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc
𝑗 ∈ 𝑁, 1o, ∅) ∈
2o) |
| 58 | | eleq1 2259 |
. . . . . . 7
⊢ (𝑖 = suc 𝑗 → (𝑖 ∈ 𝑁 ↔ suc 𝑗 ∈ 𝑁)) |
| 59 | 58 | ifbid 3582 |
. . . . . 6
⊢ (𝑖 = suc 𝑗 → if(𝑖 ∈ 𝑁, 1o, ∅) = if(suc 𝑗 ∈ 𝑁, 1o, ∅)) |
| 60 | | eqid 2196 |
. . . . . 6
⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) |
| 61 | 59, 60 | fvmptg 5637 |
. . . . 5
⊢ ((suc
𝑗 ∈ ω ∧
if(suc 𝑗 ∈ 𝑁, 1o, ∅) ∈
2o) → ((𝑖
∈ ω ↦ if(𝑖
∈ 𝑁, 1o,
∅))‘suc 𝑗) =
if(suc 𝑗 ∈ 𝑁, 1o,
∅)) |
| 62 | 25, 57, 61 | syl2anc 411 |
. . . 4
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘suc 𝑗) = if(suc 𝑗 ∈ 𝑁, 1o, ∅)) |
| 63 | | simpr 110 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 𝑗 ∈
ω) |
| 64 | 55, 56, 51 | ifcldcd 3597 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(𝑗 ∈ 𝑁, 1o, ∅) ∈
2o) |
| 65 | | eleq1 2259 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → (𝑖 ∈ 𝑁 ↔ 𝑗 ∈ 𝑁)) |
| 66 | 65 | ifbid 3582 |
. . . . . 6
⊢ (𝑖 = 𝑗 → if(𝑖 ∈ 𝑁, 1o, ∅) = if(𝑗 ∈ 𝑁, 1o, ∅)) |
| 67 | 66, 60 | fvmptg 5637 |
. . . . 5
⊢ ((𝑗 ∈ ω ∧ if(𝑗 ∈ 𝑁, 1o, ∅) ∈
2o) → ((𝑖
∈ ω ↦ if(𝑖
∈ 𝑁, 1o,
∅))‘𝑗) =
if(𝑗 ∈ 𝑁, 1o,
∅)) |
| 68 | 63, 64, 67 | syl2anc 411 |
. . . 4
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘𝑗) = if(𝑗 ∈ 𝑁, 1o, ∅)) |
| 69 | 54, 62, 68 | 3sstr4d 3228 |
. . 3
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘𝑗)) |
| 70 | 69 | ralrimiva 2570 |
. 2
⊢ (𝑁 ∈ ω →
∀𝑗 ∈ ω
((𝑖 ∈ ω ↦
if(𝑖 ∈ 𝑁, 1o,
∅))‘suc 𝑗)
⊆ ((𝑖 ∈ ω
↦ if(𝑖 ∈ 𝑁, 1o,
∅))‘𝑗)) |
| 71 | | fveq1 5557 |
. . . . 5
⊢ (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘suc 𝑗)) |
| 72 | | fveq1 5557 |
. . . . 5
⊢ (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) → (𝑓‘𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘𝑗)) |
| 73 | 71, 72 | sseq12d 3214 |
. . . 4
⊢ (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) → ((𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘𝑗))) |
| 74 | 73 | ralbidv 2497 |
. . 3
⊢ (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) →
(∀𝑗 ∈ ω
(𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘𝑗))) |
| 75 | | df-nninf 7186 |
. . 3
⊢
ℕ∞ = {𝑓 ∈ (2o
↑𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗)} |
| 76 | 74, 75 | elrab2 2923 |
. 2
⊢ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈
ℕ∞ ↔ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈
(2o ↑𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘𝑗))) |
| 77 | 13, 70, 76 | sylanbrc 417 |
1
⊢ (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈
ℕ∞) |