ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninf GIF version

Theorem nnnninf 7031
Description: Elements of corresponding to natural numbers. The natural number 𝑁 corresponds to a sequence of 𝑁 ones followed by zeroes. Contrast to a sequence which is all ones as seen at infnninf 7030. Remark/TODO: the theorem still holds if 𝑁 = ω, that is, the antecedent could be weakened to 𝑁 ∈ suc ω. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
nnnninf (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Distinct variable group:   𝑖,𝑁

Proof of Theorem nnnninf
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1oex 6329 . . . . . . . 8 1o ∈ V
21sucid 4347 . . . . . . 7 1o ∈ suc 1o
3 df-2o 6322 . . . . . . 7 2o = suc 1o
42, 3eleqtrri 2216 . . . . . 6 1o ∈ 2o
54a1i 9 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → 1o ∈ 2o)
6 2on0 6331 . . . . . . 7 2o ≠ ∅
7 2onn 6425 . . . . . . . 8 2o ∈ ω
8 nn0eln0 4541 . . . . . . . 8 (2o ∈ ω → (∅ ∈ 2o ↔ 2o ≠ ∅))
97, 8ax-mp 5 . . . . . . 7 (∅ ∈ 2o ↔ 2o ≠ ∅)
106, 9mpbir 145 . . . . . 6 ∅ ∈ 2o
1110a1i 9 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → ∅ ∈ 2o)
12 nndcel 6404 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑖𝑁)
1312ancoms 266 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → DECID 𝑖𝑁)
145, 11, 13ifcldcd 3512 . . . 4 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → if(𝑖𝑁, 1o, ∅) ∈ 2o)
15 eqid 2140 . . . 4 (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))
1614, 15fmptd 5582 . . 3 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)):ω⟶2o)
177elexi 2701 . . . 4 2o ∈ V
18 omex 4515 . . . 4 ω ∈ V
1917, 18elmap 6579 . . 3 ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)):ω⟶2o)
2016, 19sylibr 133 . 2 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω))
21 ssid 3122 . . . . . . . . 9 1o ⊆ 1o
22 iftrue 3484 . . . . . . . . . . 11 (suc 𝑗𝑁 → if(suc 𝑗𝑁, 1o, ∅) = 1o)
2322sseq1d 3131 . . . . . . . . . 10 (suc 𝑗𝑁 → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ 1o ⊆ 1o))
2423adantl 275 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ suc 𝑗𝑁) → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ 1o ⊆ 1o))
2521, 24mpbiri 167 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ suc 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
26 0ss 3406 . . . . . . . . 9 ∅ ⊆ 1o
27 iffalse 3487 . . . . . . . . . . 11 (¬ suc 𝑗𝑁 → if(suc 𝑗𝑁, 1o, ∅) = ∅)
2827sseq1d 3131 . . . . . . . . . 10 (¬ suc 𝑗𝑁 → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ ∅ ⊆ 1o))
2928adantl 275 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ suc 𝑗𝑁) → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ ∅ ⊆ 1o))
3026, 29mpbiri 167 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ suc 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
31 peano2 4517 . . . . . . . . . . 11 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
3231adantl 275 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → suc 𝑗 ∈ ω)
33 simpl 108 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 𝑁 ∈ ω)
34 nndcel 6404 . . . . . . . . . 10 ((suc 𝑗 ∈ ω ∧ 𝑁 ∈ ω) → DECID suc 𝑗𝑁)
3532, 33, 34syl2anc 409 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → DECID suc 𝑗𝑁)
36 exmiddc 822 . . . . . . . . 9 (DECID suc 𝑗𝑁 → (suc 𝑗𝑁 ∨ ¬ suc 𝑗𝑁))
3735, 36syl 14 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (suc 𝑗𝑁 ∨ ¬ suc 𝑗𝑁))
3825, 30, 37mpjaodan 788 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
3938adantr 274 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
40 iftrue 3484 . . . . . . 7 (𝑗𝑁 → if(𝑗𝑁, 1o, ∅) = 1o)
4140adantl 275 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(𝑗𝑁, 1o, ∅) = 1o)
4239, 41sseqtrrd 3141 . . . . 5 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
43 ssid 3122 . . . . . . 7 ∅ ⊆ ∅
4443a1i 9 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → ∅ ⊆ ∅)
45 nnord 4533 . . . . . . . . . . . 12 (𝑁 ∈ ω → Ord 𝑁)
46 ordtr 4308 . . . . . . . . . . . 12 (Ord 𝑁 → Tr 𝑁)
4745, 46syl 14 . . . . . . . . . . 11 (𝑁 ∈ ω → Tr 𝑁)
48 trsuc 4352 . . . . . . . . . . 11 ((Tr 𝑁 ∧ suc 𝑗𝑁) → 𝑗𝑁)
4947, 48sylan 281 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ suc 𝑗𝑁) → 𝑗𝑁)
5049ex 114 . . . . . . . . 9 (𝑁 ∈ ω → (suc 𝑗𝑁𝑗𝑁))
5150adantr 274 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (suc 𝑗𝑁𝑗𝑁))
5251con3dimp 625 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → ¬ suc 𝑗𝑁)
5352, 27syl 14 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) = ∅)
54 iffalse 3487 . . . . . . 7 𝑗𝑁 → if(𝑗𝑁, 1o, ∅) = ∅)
5554adantl 275 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(𝑗𝑁, 1o, ∅) = ∅)
5644, 53, 553sstr4d 3147 . . . . 5 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
57 nndcel 6404 . . . . . . 7 ((𝑗 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑗𝑁)
5857ancoms 266 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → DECID 𝑗𝑁)
59 exmiddc 822 . . . . . 6 (DECID 𝑗𝑁 → (𝑗𝑁 ∨ ¬ 𝑗𝑁))
6058, 59syl 14 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (𝑗𝑁 ∨ ¬ 𝑗𝑁))
6142, 56, 60mpjaodan 788 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
624a1i 9 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 1o ∈ 2o)
6310a1i 9 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ∈ 2o)
6462, 63, 35ifcldcd 3512 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ∈ 2o)
65 eleq1 2203 . . . . . . 7 (𝑖 = suc 𝑗 → (𝑖𝑁 ↔ suc 𝑗𝑁))
6665ifbid 3498 . . . . . 6 (𝑖 = suc 𝑗 → if(𝑖𝑁, 1o, ∅) = if(suc 𝑗𝑁, 1o, ∅))
6766, 15fvmptg 5505 . . . . 5 ((suc 𝑗 ∈ ω ∧ if(suc 𝑗𝑁, 1o, ∅) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) = if(suc 𝑗𝑁, 1o, ∅))
6832, 64, 67syl2anc 409 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) = if(suc 𝑗𝑁, 1o, ∅))
69 simpr 109 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
7062, 63, 58ifcldcd 3512 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(𝑗𝑁, 1o, ∅) ∈ 2o)
71 eleq1 2203 . . . . . . 7 (𝑖 = 𝑗 → (𝑖𝑁𝑗𝑁))
7271ifbid 3498 . . . . . 6 (𝑖 = 𝑗 → if(𝑖𝑁, 1o, ∅) = if(𝑗𝑁, 1o, ∅))
7372, 15fvmptg 5505 . . . . 5 ((𝑗 ∈ ω ∧ if(𝑗𝑁, 1o, ∅) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
7469, 70, 73syl2anc 409 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
7561, 68, 743sstr4d 3147 . . 3 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
7675ralrimiva 2508 . 2 (𝑁 ∈ ω → ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
77 fveq1 5428 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗))
78 fveq1 5428 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (𝑓𝑗) = ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
7977, 78sseq12d 3133 . . . 4 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
8079ralbidv 2438 . . 3 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
81 df-nninf 7015 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
8280, 81elrab2 2847 . 2 ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ ↔ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
8320, 76, 82sylanbrc 414 1 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820   = wceq 1332  wcel 1481  wne 2309  wral 2417  wss 3076  c0 3368  ifcif 3479  cmpt 3997  Tr wtr 4034  Ord word 4292  suc csuc 4295  ωcom 4512  wf 5127  cfv 5131  (class class class)co 5782  1oc1o 6314  2oc2o 6315  𝑚 cmap 6550  xnninf 7013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1o 6321  df-2o 6322  df-map 6552  df-nninf 7015
This theorem is referenced by:  fnn0nninf  10241  nninfsellemdc  13381  nninfsellemqall  13386  nninffeq  13391
  Copyright terms: Public domain W3C validator