ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninf GIF version

Theorem nnnninf 7058
Description: Elements of corresponding to natural numbers. The natural number 𝑁 corresponds to a sequence of 𝑁 ones followed by zeroes. This can be strengthened to include infinity, see nnnninf2 7059. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
nnnninf (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Distinct variable group:   𝑖,𝑁

Proof of Theorem nnnninf
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2o 6383 . . . . . 6 1o ∈ 2o
21a1i 9 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → 1o ∈ 2o)
3 0lt2o 6382 . . . . . 6 ∅ ∈ 2o
43a1i 9 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → ∅ ∈ 2o)
5 nndcel 6440 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑖𝑁)
65ancoms 266 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → DECID 𝑖𝑁)
72, 4, 6ifcldcd 3540 . . . 4 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → if(𝑖𝑁, 1o, ∅) ∈ 2o)
87fmpttd 5619 . . 3 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)):ω⟶2o)
9 2onn 6461 . . . . 5 2o ∈ ω
109elexi 2724 . . . 4 2o ∈ V
11 omex 4550 . . . 4 ω ∈ V
1210, 11elmap 6615 . . 3 ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)):ω⟶2o)
138, 12sylibr 133 . 2 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω))
14 ssid 3148 . . . . . . . . 9 1o ⊆ 1o
15 iftrue 3510 . . . . . . . . . . 11 (suc 𝑗𝑁 → if(suc 𝑗𝑁, 1o, ∅) = 1o)
1615sseq1d 3157 . . . . . . . . . 10 (suc 𝑗𝑁 → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ 1o ⊆ 1o))
1716adantl 275 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ suc 𝑗𝑁) → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ 1o ⊆ 1o))
1814, 17mpbiri 167 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ suc 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
19 0ss 3432 . . . . . . . . 9 ∅ ⊆ 1o
20 iffalse 3513 . . . . . . . . . . 11 (¬ suc 𝑗𝑁 → if(suc 𝑗𝑁, 1o, ∅) = ∅)
2120sseq1d 3157 . . . . . . . . . 10 (¬ suc 𝑗𝑁 → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ ∅ ⊆ 1o))
2221adantl 275 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ suc 𝑗𝑁) → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ ∅ ⊆ 1o))
2319, 22mpbiri 167 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ suc 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
24 peano2 4552 . . . . . . . . . . 11 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
2524adantl 275 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → suc 𝑗 ∈ ω)
26 simpl 108 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 𝑁 ∈ ω)
27 nndcel 6440 . . . . . . . . . 10 ((suc 𝑗 ∈ ω ∧ 𝑁 ∈ ω) → DECID suc 𝑗𝑁)
2825, 26, 27syl2anc 409 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → DECID suc 𝑗𝑁)
29 exmiddc 822 . . . . . . . . 9 (DECID suc 𝑗𝑁 → (suc 𝑗𝑁 ∨ ¬ suc 𝑗𝑁))
3028, 29syl 14 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (suc 𝑗𝑁 ∨ ¬ suc 𝑗𝑁))
3118, 23, 30mpjaodan 788 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
3231adantr 274 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
33 iftrue 3510 . . . . . . 7 (𝑗𝑁 → if(𝑗𝑁, 1o, ∅) = 1o)
3433adantl 275 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(𝑗𝑁, 1o, ∅) = 1o)
3532, 34sseqtrrd 3167 . . . . 5 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
36 ssid 3148 . . . . . . 7 ∅ ⊆ ∅
3736a1i 9 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → ∅ ⊆ ∅)
38 nnord 4569 . . . . . . . . . . . 12 (𝑁 ∈ ω → Ord 𝑁)
39 ordtr 4337 . . . . . . . . . . . 12 (Ord 𝑁 → Tr 𝑁)
4038, 39syl 14 . . . . . . . . . . 11 (𝑁 ∈ ω → Tr 𝑁)
41 trsuc 4381 . . . . . . . . . . 11 ((Tr 𝑁 ∧ suc 𝑗𝑁) → 𝑗𝑁)
4240, 41sylan 281 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ suc 𝑗𝑁) → 𝑗𝑁)
4342ex 114 . . . . . . . . 9 (𝑁 ∈ ω → (suc 𝑗𝑁𝑗𝑁))
4443adantr 274 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (suc 𝑗𝑁𝑗𝑁))
4544con3dimp 625 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → ¬ suc 𝑗𝑁)
4645, 20syl 14 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) = ∅)
47 iffalse 3513 . . . . . . 7 𝑗𝑁 → if(𝑗𝑁, 1o, ∅) = ∅)
4847adantl 275 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(𝑗𝑁, 1o, ∅) = ∅)
4937, 46, 483sstr4d 3173 . . . . 5 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
50 nndcel 6440 . . . . . . 7 ((𝑗 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑗𝑁)
5150ancoms 266 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → DECID 𝑗𝑁)
52 exmiddc 822 . . . . . 6 (DECID 𝑗𝑁 → (𝑗𝑁 ∨ ¬ 𝑗𝑁))
5351, 52syl 14 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (𝑗𝑁 ∨ ¬ 𝑗𝑁))
5435, 49, 53mpjaodan 788 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
551a1i 9 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 1o ∈ 2o)
563a1i 9 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ∈ 2o)
5755, 56, 28ifcldcd 3540 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ∈ 2o)
58 eleq1 2220 . . . . . . 7 (𝑖 = suc 𝑗 → (𝑖𝑁 ↔ suc 𝑗𝑁))
5958ifbid 3526 . . . . . 6 (𝑖 = suc 𝑗 → if(𝑖𝑁, 1o, ∅) = if(suc 𝑗𝑁, 1o, ∅))
60 eqid 2157 . . . . . 6 (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))
6159, 60fvmptg 5541 . . . . 5 ((suc 𝑗 ∈ ω ∧ if(suc 𝑗𝑁, 1o, ∅) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) = if(suc 𝑗𝑁, 1o, ∅))
6225, 57, 61syl2anc 409 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) = if(suc 𝑗𝑁, 1o, ∅))
63 simpr 109 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
6455, 56, 51ifcldcd 3540 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(𝑗𝑁, 1o, ∅) ∈ 2o)
65 eleq1 2220 . . . . . . 7 (𝑖 = 𝑗 → (𝑖𝑁𝑗𝑁))
6665ifbid 3526 . . . . . 6 (𝑖 = 𝑗 → if(𝑖𝑁, 1o, ∅) = if(𝑗𝑁, 1o, ∅))
6766, 60fvmptg 5541 . . . . 5 ((𝑗 ∈ ω ∧ if(𝑗𝑁, 1o, ∅) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
6863, 64, 67syl2anc 409 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
6954, 62, 683sstr4d 3173 . . 3 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
7069ralrimiva 2530 . 2 (𝑁 ∈ ω → ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
71 fveq1 5464 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗))
72 fveq1 5464 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (𝑓𝑗) = ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
7371, 72sseq12d 3159 . . . 4 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
7473ralbidv 2457 . . 3 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
75 df-nninf 7054 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
7674, 75elrab2 2871 . 2 ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ ↔ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
7713, 70, 76sylanbrc 414 1 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820   = wceq 1335  wcel 2128  wral 2435  wss 3102  c0 3394  ifcif 3505  cmpt 4025  Tr wtr 4062  Ord word 4321  suc csuc 4324  ωcom 4547  wf 5163  cfv 5167  (class class class)co 5818  1oc1o 6350  2oc2o 6351  𝑚 cmap 6586  xnninf 7053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1o 6357  df-2o 6358  df-map 6588  df-nninf 7054
This theorem is referenced by:  nnnninf2  7059  fnn0nninf  10318  nninfsellemdc  13544  nninfsellemqall  13549  nninffeq  13554
  Copyright terms: Public domain W3C validator