ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninf GIF version

Theorem nnnninf 7235
Description: Elements of corresponding to natural numbers. The natural number 𝑁 corresponds to a sequence of 𝑁 ones followed by zeroes. This can be strengthened to include infinity, see nnnninf2 7236. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
nnnninf (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Distinct variable group:   𝑖,𝑁

Proof of Theorem nnnninf
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2o 6535 . . . . . 6 1o ∈ 2o
21a1i 9 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → 1o ∈ 2o)
3 0lt2o 6534 . . . . . 6 ∅ ∈ 2o
43a1i 9 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → ∅ ∈ 2o)
5 nndcel 6593 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑖𝑁)
65ancoms 268 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → DECID 𝑖𝑁)
72, 4, 6ifcldcd 3609 . . . 4 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → if(𝑖𝑁, 1o, ∅) ∈ 2o)
87fmpttd 5742 . . 3 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)):ω⟶2o)
9 2onn 6614 . . . . 5 2o ∈ ω
109elexi 2785 . . . 4 2o ∈ V
11 omex 4645 . . . 4 ω ∈ V
1210, 11elmap 6771 . . 3 ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)):ω⟶2o)
138, 12sylibr 134 . 2 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω))
14 ssid 3214 . . . . . . . . 9 1o ⊆ 1o
15 iftrue 3577 . . . . . . . . . . 11 (suc 𝑗𝑁 → if(suc 𝑗𝑁, 1o, ∅) = 1o)
1615sseq1d 3223 . . . . . . . . . 10 (suc 𝑗𝑁 → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ 1o ⊆ 1o))
1716adantl 277 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ suc 𝑗𝑁) → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ 1o ⊆ 1o))
1814, 17mpbiri 168 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ suc 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
19 0ss 3500 . . . . . . . . 9 ∅ ⊆ 1o
20 iffalse 3580 . . . . . . . . . . 11 (¬ suc 𝑗𝑁 → if(suc 𝑗𝑁, 1o, ∅) = ∅)
2120sseq1d 3223 . . . . . . . . . 10 (¬ suc 𝑗𝑁 → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ ∅ ⊆ 1o))
2221adantl 277 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ suc 𝑗𝑁) → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ ∅ ⊆ 1o))
2319, 22mpbiri 168 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ suc 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
24 peano2 4647 . . . . . . . . . . 11 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
2524adantl 277 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → suc 𝑗 ∈ ω)
26 simpl 109 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 𝑁 ∈ ω)
27 nndcel 6593 . . . . . . . . . 10 ((suc 𝑗 ∈ ω ∧ 𝑁 ∈ ω) → DECID suc 𝑗𝑁)
2825, 26, 27syl2anc 411 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → DECID suc 𝑗𝑁)
29 exmiddc 838 . . . . . . . . 9 (DECID suc 𝑗𝑁 → (suc 𝑗𝑁 ∨ ¬ suc 𝑗𝑁))
3028, 29syl 14 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (suc 𝑗𝑁 ∨ ¬ suc 𝑗𝑁))
3118, 23, 30mpjaodan 800 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
3231adantr 276 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
33 iftrue 3577 . . . . . . 7 (𝑗𝑁 → if(𝑗𝑁, 1o, ∅) = 1o)
3433adantl 277 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(𝑗𝑁, 1o, ∅) = 1o)
3532, 34sseqtrrd 3233 . . . . 5 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
36 ssid 3214 . . . . . . 7 ∅ ⊆ ∅
3736a1i 9 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → ∅ ⊆ ∅)
38 nnord 4664 . . . . . . . . . . . 12 (𝑁 ∈ ω → Ord 𝑁)
39 ordtr 4429 . . . . . . . . . . . 12 (Ord 𝑁 → Tr 𝑁)
4038, 39syl 14 . . . . . . . . . . 11 (𝑁 ∈ ω → Tr 𝑁)
41 trsuc 4473 . . . . . . . . . . 11 ((Tr 𝑁 ∧ suc 𝑗𝑁) → 𝑗𝑁)
4240, 41sylan 283 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ suc 𝑗𝑁) → 𝑗𝑁)
4342ex 115 . . . . . . . . 9 (𝑁 ∈ ω → (suc 𝑗𝑁𝑗𝑁))
4443adantr 276 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (suc 𝑗𝑁𝑗𝑁))
4544con3dimp 636 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → ¬ suc 𝑗𝑁)
4645, 20syl 14 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) = ∅)
47 iffalse 3580 . . . . . . 7 𝑗𝑁 → if(𝑗𝑁, 1o, ∅) = ∅)
4847adantl 277 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(𝑗𝑁, 1o, ∅) = ∅)
4937, 46, 483sstr4d 3239 . . . . 5 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
50 nndcel 6593 . . . . . . 7 ((𝑗 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑗𝑁)
5150ancoms 268 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → DECID 𝑗𝑁)
52 exmiddc 838 . . . . . 6 (DECID 𝑗𝑁 → (𝑗𝑁 ∨ ¬ 𝑗𝑁))
5351, 52syl 14 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (𝑗𝑁 ∨ ¬ 𝑗𝑁))
5435, 49, 53mpjaodan 800 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
551a1i 9 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 1o ∈ 2o)
563a1i 9 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ∈ 2o)
5755, 56, 28ifcldcd 3609 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ∈ 2o)
58 eleq1 2269 . . . . . . 7 (𝑖 = suc 𝑗 → (𝑖𝑁 ↔ suc 𝑗𝑁))
5958ifbid 3593 . . . . . 6 (𝑖 = suc 𝑗 → if(𝑖𝑁, 1o, ∅) = if(suc 𝑗𝑁, 1o, ∅))
60 eqid 2206 . . . . . 6 (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))
6159, 60fvmptg 5662 . . . . 5 ((suc 𝑗 ∈ ω ∧ if(suc 𝑗𝑁, 1o, ∅) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) = if(suc 𝑗𝑁, 1o, ∅))
6225, 57, 61syl2anc 411 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) = if(suc 𝑗𝑁, 1o, ∅))
63 simpr 110 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
6455, 56, 51ifcldcd 3609 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(𝑗𝑁, 1o, ∅) ∈ 2o)
65 eleq1 2269 . . . . . . 7 (𝑖 = 𝑗 → (𝑖𝑁𝑗𝑁))
6665ifbid 3593 . . . . . 6 (𝑖 = 𝑗 → if(𝑖𝑁, 1o, ∅) = if(𝑗𝑁, 1o, ∅))
6766, 60fvmptg 5662 . . . . 5 ((𝑗 ∈ ω ∧ if(𝑗𝑁, 1o, ∅) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
6863, 64, 67syl2anc 411 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
6954, 62, 683sstr4d 3239 . . 3 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
7069ralrimiva 2580 . 2 (𝑁 ∈ ω → ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
71 fveq1 5582 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗))
72 fveq1 5582 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (𝑓𝑗) = ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
7371, 72sseq12d 3225 . . . 4 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
7473ralbidv 2507 . . 3 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
75 df-nninf 7229 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
7674, 75elrab2 2933 . 2 ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ ↔ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
7713, 70, 76sylanbrc 417 1 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  wss 3167  c0 3461  ifcif 3572  cmpt 4109  Tr wtr 4146  Ord word 4413  suc csuc 4416  ωcom 4642  wf 5272  cfv 5276  (class class class)co 5951  1oc1o 6502  2oc2o 6503  𝑚 cmap 6742  xnninf 7228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1o 6509  df-2o 6510  df-map 6744  df-nninf 7229
This theorem is referenced by:  nnnninf2  7236  fnn0nninf  10590  nninfinf  10595  nninfsellemdc  16021  nninfsellemqall  16026  nninffeq  16031
  Copyright terms: Public domain W3C validator