ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninf GIF version

Theorem nnnninf 7192
Description: Elements of corresponding to natural numbers. The natural number 𝑁 corresponds to a sequence of 𝑁 ones followed by zeroes. This can be strengthened to include infinity, see nnnninf2 7193. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
nnnninf (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Distinct variable group:   𝑖,𝑁

Proof of Theorem nnnninf
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2o 6500 . . . . . 6 1o ∈ 2o
21a1i 9 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → 1o ∈ 2o)
3 0lt2o 6499 . . . . . 6 ∅ ∈ 2o
43a1i 9 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → ∅ ∈ 2o)
5 nndcel 6558 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑖𝑁)
65ancoms 268 . . . . 5 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → DECID 𝑖𝑁)
72, 4, 6ifcldcd 3597 . . . 4 ((𝑁 ∈ ω ∧ 𝑖 ∈ ω) → if(𝑖𝑁, 1o, ∅) ∈ 2o)
87fmpttd 5717 . . 3 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)):ω⟶2o)
9 2onn 6579 . . . . 5 2o ∈ ω
109elexi 2775 . . . 4 2o ∈ V
11 omex 4629 . . . 4 ω ∈ V
1210, 11elmap 6736 . . 3 ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)):ω⟶2o)
138, 12sylibr 134 . 2 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω))
14 ssid 3203 . . . . . . . . 9 1o ⊆ 1o
15 iftrue 3566 . . . . . . . . . . 11 (suc 𝑗𝑁 → if(suc 𝑗𝑁, 1o, ∅) = 1o)
1615sseq1d 3212 . . . . . . . . . 10 (suc 𝑗𝑁 → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ 1o ⊆ 1o))
1716adantl 277 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ suc 𝑗𝑁) → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ 1o ⊆ 1o))
1814, 17mpbiri 168 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ suc 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
19 0ss 3489 . . . . . . . . 9 ∅ ⊆ 1o
20 iffalse 3569 . . . . . . . . . . 11 (¬ suc 𝑗𝑁 → if(suc 𝑗𝑁, 1o, ∅) = ∅)
2120sseq1d 3212 . . . . . . . . . 10 (¬ suc 𝑗𝑁 → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ ∅ ⊆ 1o))
2221adantl 277 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ suc 𝑗𝑁) → (if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o ↔ ∅ ⊆ 1o))
2319, 22mpbiri 168 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ suc 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
24 peano2 4631 . . . . . . . . . . 11 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
2524adantl 277 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → suc 𝑗 ∈ ω)
26 simpl 109 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 𝑁 ∈ ω)
27 nndcel 6558 . . . . . . . . . 10 ((suc 𝑗 ∈ ω ∧ 𝑁 ∈ ω) → DECID suc 𝑗𝑁)
2825, 26, 27syl2anc 411 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → DECID suc 𝑗𝑁)
29 exmiddc 837 . . . . . . . . 9 (DECID suc 𝑗𝑁 → (suc 𝑗𝑁 ∨ ¬ suc 𝑗𝑁))
3028, 29syl 14 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (suc 𝑗𝑁 ∨ ¬ suc 𝑗𝑁))
3118, 23, 30mpjaodan 799 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
3231adantr 276 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ 1o)
33 iftrue 3566 . . . . . . 7 (𝑗𝑁 → if(𝑗𝑁, 1o, ∅) = 1o)
3433adantl 277 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(𝑗𝑁, 1o, ∅) = 1o)
3532, 34sseqtrrd 3222 . . . . 5 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
36 ssid 3203 . . . . . . 7 ∅ ⊆ ∅
3736a1i 9 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → ∅ ⊆ ∅)
38 nnord 4648 . . . . . . . . . . . 12 (𝑁 ∈ ω → Ord 𝑁)
39 ordtr 4413 . . . . . . . . . . . 12 (Ord 𝑁 → Tr 𝑁)
4038, 39syl 14 . . . . . . . . . . 11 (𝑁 ∈ ω → Tr 𝑁)
41 trsuc 4457 . . . . . . . . . . 11 ((Tr 𝑁 ∧ suc 𝑗𝑁) → 𝑗𝑁)
4240, 41sylan 283 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ suc 𝑗𝑁) → 𝑗𝑁)
4342ex 115 . . . . . . . . 9 (𝑁 ∈ ω → (suc 𝑗𝑁𝑗𝑁))
4443adantr 276 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (suc 𝑗𝑁𝑗𝑁))
4544con3dimp 636 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → ¬ suc 𝑗𝑁)
4645, 20syl 14 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) = ∅)
47 iffalse 3569 . . . . . . 7 𝑗𝑁 → if(𝑗𝑁, 1o, ∅) = ∅)
4847adantl 277 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(𝑗𝑁, 1o, ∅) = ∅)
4937, 46, 483sstr4d 3228 . . . . 5 (((𝑁 ∈ ω ∧ 𝑗 ∈ ω) ∧ ¬ 𝑗𝑁) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
50 nndcel 6558 . . . . . . 7 ((𝑗 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑗𝑁)
5150ancoms 268 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → DECID 𝑗𝑁)
52 exmiddc 837 . . . . . 6 (DECID 𝑗𝑁 → (𝑗𝑁 ∨ ¬ 𝑗𝑁))
5351, 52syl 14 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (𝑗𝑁 ∨ ¬ 𝑗𝑁))
5435, 49, 53mpjaodan 799 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ⊆ if(𝑗𝑁, 1o, ∅))
551a1i 9 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 1o ∈ 2o)
563a1i 9 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ∈ 2o)
5755, 56, 28ifcldcd 3597 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(suc 𝑗𝑁, 1o, ∅) ∈ 2o)
58 eleq1 2259 . . . . . . 7 (𝑖 = suc 𝑗 → (𝑖𝑁 ↔ suc 𝑗𝑁))
5958ifbid 3582 . . . . . 6 (𝑖 = suc 𝑗 → if(𝑖𝑁, 1o, ∅) = if(suc 𝑗𝑁, 1o, ∅))
60 eqid 2196 . . . . . 6 (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))
6159, 60fvmptg 5637 . . . . 5 ((suc 𝑗 ∈ ω ∧ if(suc 𝑗𝑁, 1o, ∅) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) = if(suc 𝑗𝑁, 1o, ∅))
6225, 57, 61syl2anc 411 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) = if(suc 𝑗𝑁, 1o, ∅))
63 simpr 110 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
6455, 56, 51ifcldcd 3597 . . . . 5 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → if(𝑗𝑁, 1o, ∅) ∈ 2o)
65 eleq1 2259 . . . . . . 7 (𝑖 = 𝑗 → (𝑖𝑁𝑗𝑁))
6665ifbid 3582 . . . . . 6 (𝑖 = 𝑗 → if(𝑖𝑁, 1o, ∅) = if(𝑗𝑁, 1o, ∅))
6766, 60fvmptg 5637 . . . . 5 ((𝑗 ∈ ω ∧ if(𝑗𝑁, 1o, ∅) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
6863, 64, 67syl2anc 411 . . . 4 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
6954, 62, 683sstr4d 3228 . . 3 ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
7069ralrimiva 2570 . 2 (𝑁 ∈ ω → ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
71 fveq1 5557 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗))
72 fveq1 5557 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (𝑓𝑗) = ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
7371, 72sseq12d 3214 . . . 4 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
7473ralbidv 2497 . . 3 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
75 df-nninf 7186 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
7674, 75elrab2 2923 . 2 ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ ↔ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗)))
7713, 70, 76sylanbrc 417 1 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  wss 3157  c0 3450  ifcif 3561  cmpt 4094  Tr wtr 4131  Ord word 4397  suc csuc 4400  ωcom 4626  wf 5254  cfv 5258  (class class class)co 5922  1oc1o 6467  2oc2o 6468  𝑚 cmap 6707  xnninf 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1o 6474  df-2o 6475  df-map 6709  df-nninf 7186
This theorem is referenced by:  nnnninf2  7193  fnn0nninf  10530  nninfinf  10535  nninfsellemdc  15654  nninfsellemqall  15659  nninffeq  15664
  Copyright terms: Public domain W3C validator