ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptap GIF version

Theorem aptap 8610
Description: Complex apartness (as defined at df-ap 8542) is a tight apartness (as defined at df-tap 7252). (Contributed by Jim Kingdon, 16-Feb-2025.)
Assertion
Ref Expression
aptap # TAp ℂ

Proof of Theorem aptap
Dummy variables 𝑞 𝑝 𝑟 𝑠 𝑡 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2184 . . . . . . . . . 10 (𝑢 = (1st𝑡) → (𝑢 = (𝑝 + (i · 𝑞)) ↔ (1st𝑡) = (𝑝 + (i · 𝑞))))
21anbi1d 465 . . . . . . . . 9 (𝑢 = (1st𝑡) → ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ↔ ((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠)))))
32anbi1d 465 . . . . . . . 8 (𝑢 = (1st𝑡) → (((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
432rexbidv 2502 . . . . . . 7 (𝑢 = (1st𝑡) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
542rexbidv 2502 . . . . . 6 (𝑢 = (1st𝑡) → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
6 eqeq1 2184 . . . . . . . . . 10 (𝑣 = (2nd𝑡) → (𝑣 = (𝑟 + (i · 𝑠)) ↔ (2nd𝑡) = (𝑟 + (i · 𝑠))))
76anbi2d 464 . . . . . . . . 9 (𝑣 = (2nd𝑡) → (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ↔ ((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠)))))
87anbi1d 465 . . . . . . . 8 (𝑣 = (2nd𝑡) → ((((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
982rexbidv 2502 . . . . . . 7 (𝑣 = (2nd𝑡) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
1092rexbidv 2502 . . . . . 6 (𝑣 = (2nd𝑡) → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
115, 10elopabi 6199 . . . . 5 (𝑡 ∈ {⟨𝑢, 𝑣⟩ ∣ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))} → ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)))
12 df-ap 8542 . . . . 5 # = {⟨𝑢, 𝑣⟩ ∣ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))}
1311, 12eleq2s 2272 . . . 4 (𝑡 ∈ # → ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)))
1412relopabi 4754 . . . . . . . . . 10 Rel #
15 simp-5l 543 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 ∈ # )
16 1st2nd 6185 . . . . . . . . . 10 ((Rel # ∧ 𝑡 ∈ # ) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
1714, 15, 16sylancr 414 . . . . . . . . 9 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
18 simprll 537 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (1st𝑡) = (𝑝 + (i · 𝑞)))
19 simp-5r 544 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑝 ∈ ℝ)
2019recnd 7989 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑝 ∈ ℂ)
21 ax-icn 7909 . . . . . . . . . . . . . 14 i ∈ ℂ
2221a1i 9 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → i ∈ ℂ)
23 simp-4r 542 . . . . . . . . . . . . . 14 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑞 ∈ ℝ)
2423recnd 7989 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑞 ∈ ℂ)
2522, 24mulcld 7981 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (i · 𝑞) ∈ ℂ)
2620, 25addcld 7980 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (𝑝 + (i · 𝑞)) ∈ ℂ)
2718, 26eqeltrd 2254 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (1st𝑡) ∈ ℂ)
28 simprlr 538 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (2nd𝑡) = (𝑟 + (i · 𝑠)))
29 simpllr 534 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑟 ∈ ℝ)
3029recnd 7989 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑟 ∈ ℂ)
31 simplr 528 . . . . . . . . . . . . . 14 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑠 ∈ ℝ)
3231recnd 7989 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑠 ∈ ℂ)
3322, 32mulcld 7981 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (i · 𝑠) ∈ ℂ)
3430, 33addcld 7980 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (𝑟 + (i · 𝑠)) ∈ ℂ)
3528, 34eqeltrd 2254 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (2nd𝑡) ∈ ℂ)
3627, 35jca 306 . . . . . . . . 9 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → ((1st𝑡) ∈ ℂ ∧ (2nd𝑡) ∈ ℂ))
37 elxp6 6173 . . . . . . . . 9 (𝑡 ∈ (ℂ × ℂ) ↔ (𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩ ∧ ((1st𝑡) ∈ ℂ ∧ (2nd𝑡) ∈ ℂ)))
3817, 36, 37sylanbrc 417 . . . . . . . 8 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 ∈ (ℂ × ℂ))
3938rexlimdva2 2597 . . . . . . 7 ((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) → (∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4039rexlimdva 2594 . . . . . 6 (((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4140rexlimdva 2594 . . . . 5 ((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) → (∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4241rexlimdva 2594 . . . 4 (𝑡 ∈ # → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4313, 42mpd 13 . . 3 (𝑡 ∈ # → 𝑡 ∈ (ℂ × ℂ))
4443ssriv 3161 . 2 # ⊆ (ℂ × ℂ)
45 apirr 8565 . . . 4 (𝑥 ∈ ℂ → ¬ 𝑥 # 𝑥)
4645rgen 2530 . . 3 𝑥 ∈ ℂ ¬ 𝑥 # 𝑥
47 apsym 8566 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 # 𝑦𝑦 # 𝑥))
4847biimpd 144 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 # 𝑦𝑦 # 𝑥))
4948rgen2 2563 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥)
5046, 49pm3.2i 272 . 2 (∀𝑥 ∈ ℂ ¬ 𝑥 # 𝑥 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥))
51 apcotr 8567 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)))
5251rgen3 2564 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧))
53 apti 8582 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
5453biimprd 158 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (¬ 𝑥 # 𝑦𝑥 = 𝑦))
5554rgen2 2563 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦)
5652, 55pm3.2i 272 . 2 (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦))
57 dftap2 7253 . 2 ( # TAp ℂ ↔ ( # ⊆ (ℂ × ℂ) ∧ (∀𝑥 ∈ ℂ ¬ 𝑥 # 𝑥 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥)) ∧ (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦))))
5844, 50, 56, 57mpbir3an 1179 1 # TAp ℂ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708   = wceq 1353  wcel 2148  wral 2455  wrex 2456  wss 3131  cop 3597   class class class wbr 4005  {copab 4065   × cxp 4626  Rel wrel 4633  cfv 5218  (class class class)co 5878  1st c1st 6142  2nd c2nd 6143   TAp wtap 7251  cc 7812  cr 7813  ici 7816   + caddc 7817   · cmul 7819   # creap 8534   # cap 8541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-pap 7250  df-tap 7252  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator