ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptap GIF version

Theorem aptap 8677
Description: Complex apartness (as defined at df-ap 8609) is a tight apartness (as defined at df-tap 7317). (Contributed by Jim Kingdon, 16-Feb-2025.)
Assertion
Ref Expression
aptap # TAp ℂ

Proof of Theorem aptap
Dummy variables 𝑞 𝑝 𝑟 𝑠 𝑡 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2203 . . . . . . . . . 10 (𝑢 = (1st𝑡) → (𝑢 = (𝑝 + (i · 𝑞)) ↔ (1st𝑡) = (𝑝 + (i · 𝑞))))
21anbi1d 465 . . . . . . . . 9 (𝑢 = (1st𝑡) → ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ↔ ((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠)))))
32anbi1d 465 . . . . . . . 8 (𝑢 = (1st𝑡) → (((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
432rexbidv 2522 . . . . . . 7 (𝑢 = (1st𝑡) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
542rexbidv 2522 . . . . . 6 (𝑢 = (1st𝑡) → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
6 eqeq1 2203 . . . . . . . . . 10 (𝑣 = (2nd𝑡) → (𝑣 = (𝑟 + (i · 𝑠)) ↔ (2nd𝑡) = (𝑟 + (i · 𝑠))))
76anbi2d 464 . . . . . . . . 9 (𝑣 = (2nd𝑡) → (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ↔ ((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠)))))
87anbi1d 465 . . . . . . . 8 (𝑣 = (2nd𝑡) → ((((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
982rexbidv 2522 . . . . . . 7 (𝑣 = (2nd𝑡) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
1092rexbidv 2522 . . . . . 6 (𝑣 = (2nd𝑡) → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
115, 10elopabi 6253 . . . . 5 (𝑡 ∈ {⟨𝑢, 𝑣⟩ ∣ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))} → ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)))
12 df-ap 8609 . . . . 5 # = {⟨𝑢, 𝑣⟩ ∣ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))}
1311, 12eleq2s 2291 . . . 4 (𝑡 ∈ # → ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)))
1412relopabi 4791 . . . . . . . . . 10 Rel #
15 simp-5l 543 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 ∈ # )
16 1st2nd 6239 . . . . . . . . . 10 ((Rel # ∧ 𝑡 ∈ # ) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
1714, 15, 16sylancr 414 . . . . . . . . 9 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
18 simprll 537 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (1st𝑡) = (𝑝 + (i · 𝑞)))
19 simp-5r 544 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑝 ∈ ℝ)
2019recnd 8055 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑝 ∈ ℂ)
21 ax-icn 7974 . . . . . . . . . . . . . 14 i ∈ ℂ
2221a1i 9 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → i ∈ ℂ)
23 simp-4r 542 . . . . . . . . . . . . . 14 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑞 ∈ ℝ)
2423recnd 8055 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑞 ∈ ℂ)
2522, 24mulcld 8047 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (i · 𝑞) ∈ ℂ)
2620, 25addcld 8046 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (𝑝 + (i · 𝑞)) ∈ ℂ)
2718, 26eqeltrd 2273 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (1st𝑡) ∈ ℂ)
28 simprlr 538 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (2nd𝑡) = (𝑟 + (i · 𝑠)))
29 simpllr 534 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑟 ∈ ℝ)
3029recnd 8055 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑟 ∈ ℂ)
31 simplr 528 . . . . . . . . . . . . . 14 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑠 ∈ ℝ)
3231recnd 8055 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑠 ∈ ℂ)
3322, 32mulcld 8047 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (i · 𝑠) ∈ ℂ)
3430, 33addcld 8046 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (𝑟 + (i · 𝑠)) ∈ ℂ)
3528, 34eqeltrd 2273 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (2nd𝑡) ∈ ℂ)
3627, 35jca 306 . . . . . . . . 9 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → ((1st𝑡) ∈ ℂ ∧ (2nd𝑡) ∈ ℂ))
37 elxp6 6227 . . . . . . . . 9 (𝑡 ∈ (ℂ × ℂ) ↔ (𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩ ∧ ((1st𝑡) ∈ ℂ ∧ (2nd𝑡) ∈ ℂ)))
3817, 36, 37sylanbrc 417 . . . . . . . 8 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 ∈ (ℂ × ℂ))
3938rexlimdva2 2617 . . . . . . 7 ((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) → (∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4039rexlimdva 2614 . . . . . 6 (((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4140rexlimdva 2614 . . . . 5 ((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) → (∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4241rexlimdva 2614 . . . 4 (𝑡 ∈ # → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4313, 42mpd 13 . . 3 (𝑡 ∈ # → 𝑡 ∈ (ℂ × ℂ))
4443ssriv 3187 . 2 # ⊆ (ℂ × ℂ)
45 apirr 8632 . . . 4 (𝑥 ∈ ℂ → ¬ 𝑥 # 𝑥)
4645rgen 2550 . . 3 𝑥 ∈ ℂ ¬ 𝑥 # 𝑥
47 apsym 8633 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 # 𝑦𝑦 # 𝑥))
4847biimpd 144 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 # 𝑦𝑦 # 𝑥))
4948rgen2 2583 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥)
5046, 49pm3.2i 272 . 2 (∀𝑥 ∈ ℂ ¬ 𝑥 # 𝑥 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥))
51 apcotr 8634 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)))
5251rgen3 2584 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧))
53 apti 8649 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
5453biimprd 158 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (¬ 𝑥 # 𝑦𝑥 = 𝑦))
5554rgen2 2583 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦)
5652, 55pm3.2i 272 . 2 (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦))
57 dftap2 7318 . 2 ( # TAp ℂ ↔ ( # ⊆ (ℂ × ℂ) ∧ (∀𝑥 ∈ ℂ ¬ 𝑥 # 𝑥 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥)) ∧ (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦))))
5844, 50, 56, 57mpbir3an 1181 1 # TAp ℂ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167  wral 2475  wrex 2476  wss 3157  cop 3625   class class class wbr 4033  {copab 4093   × cxp 4661  Rel wrel 4668  cfv 5258  (class class class)co 5922  1st c1st 6196  2nd c2nd 6197   TAp wtap 7316  cc 7877  cr 7878  ici 7881   + caddc 7882   · cmul 7884   # creap 8601   # cap 8608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pap 7315  df-tap 7317  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator