Step | Hyp | Ref
| Expression |
1 | | eqeq1 2184 |
. . . . . . . . . 10
⊢ (𝑢 = (1st ‘𝑡) → (𝑢 = (𝑝 + (i · 𝑞)) ↔ (1st ‘𝑡) = (𝑝 + (i · 𝑞)))) |
2 | 1 | anbi1d 465 |
. . . . . . . . 9
⊢ (𝑢 = (1st ‘𝑡) → ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ↔ ((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))))) |
3 | 2 | anbi1d 465 |
. . . . . . . 8
⊢ (𝑢 = (1st ‘𝑡) → (((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)) ↔ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)))) |
4 | 3 | 2rexbidv 2502 |
. . . . . . 7
⊢ (𝑢 = (1st ‘𝑡) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st
‘𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)))) |
5 | 4 | 2rexbidv 2502 |
. . . . . 6
⊢ (𝑢 = (1st ‘𝑡) → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)) ↔ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st
‘𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)))) |
6 | | eqeq1 2184 |
. . . . . . . . . 10
⊢ (𝑣 = (2nd ‘𝑡) → (𝑣 = (𝑟 + (i · 𝑠)) ↔ (2nd ‘𝑡) = (𝑟 + (i · 𝑠)))) |
7 | 6 | anbi2d 464 |
. . . . . . . . 9
⊢ (𝑣 = (2nd ‘𝑡) → (((1st
‘𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ↔ ((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))))) |
8 | 7 | anbi1d 465 |
. . . . . . . 8
⊢ (𝑣 = (2nd ‘𝑡) → ((((1st
‘𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)) ↔ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)))) |
9 | 8 | 2rexbidv 2502 |
. . . . . . 7
⊢ (𝑣 = (2nd ‘𝑡) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ
(((1st ‘𝑡)
= (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st
‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd
‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)))) |
10 | 9 | 2rexbidv 2502 |
. . . . . 6
⊢ (𝑣 = (2nd ‘𝑡) → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ
(((1st ‘𝑡)
= (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)) ↔ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st
‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd
‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)))) |
11 | 5, 10 | elopabi 6199 |
. . . . 5
⊢ (𝑡 ∈ {〈𝑢, 𝑣〉 ∣ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))} → ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st
‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd
‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) |
12 | | df-ap 8542 |
. . . . 5
⊢ # =
{〈𝑢, 𝑣〉 ∣ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))} |
13 | 11, 12 | eleq2s 2272 |
. . . 4
⊢ (𝑡 ∈ # → ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ
(((1st ‘𝑡)
= (𝑝 + (i · 𝑞)) ∧ (2nd
‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) |
14 | 12 | relopabi 4754 |
. . . . . . . . . 10
⊢ Rel
# |
15 | | simp-5l 543 |
. . . . . . . . . 10
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → 𝑡 ∈ # ) |
16 | | 1st2nd 6185 |
. . . . . . . . . 10
⊢ ((Rel #
∧ 𝑡 ∈ # ) →
𝑡 = 〈(1st
‘𝑡), (2nd
‘𝑡)〉) |
17 | 14, 15, 16 | sylancr 414 |
. . . . . . . . 9
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → 𝑡 = 〈(1st ‘𝑡), (2nd ‘𝑡)〉) |
18 | | simprll 537 |
. . . . . . . . . . 11
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → (1st ‘𝑡) = (𝑝 + (i · 𝑞))) |
19 | | simp-5r 544 |
. . . . . . . . . . . . 13
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → 𝑝 ∈ ℝ) |
20 | 19 | recnd 7989 |
. . . . . . . . . . . 12
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → 𝑝 ∈ ℂ) |
21 | | ax-icn 7909 |
. . . . . . . . . . . . . 14
⊢ i ∈
ℂ |
22 | 21 | a1i 9 |
. . . . . . . . . . . . 13
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → i ∈ ℂ) |
23 | | simp-4r 542 |
. . . . . . . . . . . . . 14
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → 𝑞 ∈ ℝ) |
24 | 23 | recnd 7989 |
. . . . . . . . . . . . 13
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → 𝑞 ∈ ℂ) |
25 | 22, 24 | mulcld 7981 |
. . . . . . . . . . . 12
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → (i · 𝑞) ∈ ℂ) |
26 | 20, 25 | addcld 7980 |
. . . . . . . . . . 11
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → (𝑝 + (i · 𝑞)) ∈ ℂ) |
27 | 18, 26 | eqeltrd 2254 |
. . . . . . . . . 10
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → (1st ‘𝑡) ∈
ℂ) |
28 | | simprlr 538 |
. . . . . . . . . . 11
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) |
29 | | simpllr 534 |
. . . . . . . . . . . . 13
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → 𝑟 ∈ ℝ) |
30 | 29 | recnd 7989 |
. . . . . . . . . . . 12
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → 𝑟 ∈ ℂ) |
31 | | simplr 528 |
. . . . . . . . . . . . . 14
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → 𝑠 ∈ ℝ) |
32 | 31 | recnd 7989 |
. . . . . . . . . . . . 13
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → 𝑠 ∈ ℂ) |
33 | 22, 32 | mulcld 7981 |
. . . . . . . . . . . 12
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → (i · 𝑠) ∈ ℂ) |
34 | 30, 33 | addcld 7980 |
. . . . . . . . . . 11
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → (𝑟 + (i · 𝑠)) ∈ ℂ) |
35 | 28, 34 | eqeltrd 2254 |
. . . . . . . . . 10
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → (2nd ‘𝑡) ∈
ℂ) |
36 | 27, 35 | jca 306 |
. . . . . . . . 9
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → ((1st ‘𝑡) ∈ ℂ ∧
(2nd ‘𝑡)
∈ ℂ)) |
37 | | elxp6 6173 |
. . . . . . . . 9
⊢ (𝑡 ∈ (ℂ ×
ℂ) ↔ (𝑡 =
〈(1st ‘𝑡), (2nd ‘𝑡)〉 ∧ ((1st ‘𝑡) ∈ ℂ ∧
(2nd ‘𝑡)
∈ ℂ))) |
38 | 17, 36, 37 | sylanbrc 417 |
. . . . . . . 8
⊢
((((((𝑡 ∈ #
∧ 𝑝 ∈ ℝ)
∧ 𝑞 ∈ ℝ)
∧ 𝑟 ∈ ℝ)
∧ 𝑠 ∈ ℝ)
∧ (((1st ‘𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd ‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠))) → 𝑡 ∈ (ℂ ×
ℂ)) |
39 | 38 | rexlimdva2 2597 |
. . . . . . 7
⊢ ((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) →
(∃𝑠 ∈ ℝ
(((1st ‘𝑡)
= (𝑝 + (i · 𝑞)) ∧ (2nd
‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)) → 𝑡 ∈ (ℂ ×
ℂ))) |
40 | 39 | rexlimdva 2594 |
. . . . . 6
⊢ (((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) →
(∃𝑟 ∈ ℝ
∃𝑠 ∈ ℝ
(((1st ‘𝑡)
= (𝑝 + (i · 𝑞)) ∧ (2nd
‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)) → 𝑡 ∈ (ℂ ×
ℂ))) |
41 | 40 | rexlimdva 2594 |
. . . . 5
⊢ ((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) →
(∃𝑞 ∈ ℝ
∃𝑟 ∈ ℝ
∃𝑠 ∈ ℝ
(((1st ‘𝑡)
= (𝑝 + (i · 𝑞)) ∧ (2nd
‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)) → 𝑡 ∈ (ℂ ×
ℂ))) |
42 | 41 | rexlimdva 2594 |
. . . 4
⊢ (𝑡 ∈ # → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ
(((1st ‘𝑡)
= (𝑝 + (i · 𝑞)) ∧ (2nd
‘𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 #ℝ 𝑟 ∨ 𝑞 #ℝ 𝑠)) → 𝑡 ∈ (ℂ ×
ℂ))) |
43 | 13, 42 | mpd 13 |
. . 3
⊢ (𝑡 ∈ # → 𝑡 ∈ (ℂ ×
ℂ)) |
44 | 43 | ssriv 3161 |
. 2
⊢ #
⊆ (ℂ × ℂ) |
45 | | apirr 8565 |
. . . 4
⊢ (𝑥 ∈ ℂ → ¬
𝑥 # 𝑥) |
46 | 45 | rgen 2530 |
. . 3
⊢
∀𝑥 ∈
ℂ ¬ 𝑥 # 𝑥 |
47 | | apsym 8566 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 # 𝑦 ↔ 𝑦 # 𝑥)) |
48 | 47 | biimpd 144 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 # 𝑦 → 𝑦 # 𝑥)) |
49 | 48 | rgen2 2563 |
. . 3
⊢
∀𝑥 ∈
ℂ ∀𝑦 ∈
ℂ (𝑥 # 𝑦 → 𝑦 # 𝑥) |
50 | 46, 49 | pm3.2i 272 |
. 2
⊢
(∀𝑥 ∈
ℂ ¬ 𝑥 # 𝑥 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦 → 𝑦 # 𝑥)) |
51 | | apcotr 8567 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 # 𝑦 → (𝑥 # 𝑧 ∨ 𝑦 # 𝑧))) |
52 | 51 | rgen3 2564 |
. . 3
⊢
∀𝑥 ∈
ℂ ∀𝑦 ∈
ℂ ∀𝑧 ∈
ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧 ∨ 𝑦 # 𝑧)) |
53 | | apti 8582 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦)) |
54 | 53 | biimprd 158 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (¬
𝑥 # 𝑦 → 𝑥 = 𝑦)) |
55 | 54 | rgen2 2563 |
. . 3
⊢
∀𝑥 ∈
ℂ ∀𝑦 ∈
ℂ (¬ 𝑥 # 𝑦 → 𝑥 = 𝑦) |
56 | 52, 55 | pm3.2i 272 |
. 2
⊢
(∀𝑥 ∈
ℂ ∀𝑦 ∈
ℂ ∀𝑧 ∈
ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧 ∨ 𝑦 # 𝑧)) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦 → 𝑥 = 𝑦)) |
57 | | dftap2 7253 |
. 2
⊢ ( # TAp
ℂ ↔ ( # ⊆ (ℂ × ℂ) ∧ (∀𝑥 ∈ ℂ ¬ 𝑥 # 𝑥 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦 → 𝑦 # 𝑥)) ∧ (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧 ∨ 𝑦 # 𝑧)) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦 → 𝑥 = 𝑦)))) |
58 | 44, 50, 56, 57 | mpbir3an 1179 |
1
⊢ # TAp
ℂ |