ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptap GIF version

Theorem aptap 8723
Description: Complex apartness (as defined at df-ap 8655) is a tight apartness (as defined at df-tap 7362). (Contributed by Jim Kingdon, 16-Feb-2025.)
Assertion
Ref Expression
aptap # TAp ℂ

Proof of Theorem aptap
Dummy variables 𝑞 𝑝 𝑟 𝑠 𝑡 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2212 . . . . . . . . . 10 (𝑢 = (1st𝑡) → (𝑢 = (𝑝 + (i · 𝑞)) ↔ (1st𝑡) = (𝑝 + (i · 𝑞))))
21anbi1d 465 . . . . . . . . 9 (𝑢 = (1st𝑡) → ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ↔ ((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠)))))
32anbi1d 465 . . . . . . . 8 (𝑢 = (1st𝑡) → (((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
432rexbidv 2531 . . . . . . 7 (𝑢 = (1st𝑡) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
542rexbidv 2531 . . . . . 6 (𝑢 = (1st𝑡) → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
6 eqeq1 2212 . . . . . . . . . 10 (𝑣 = (2nd𝑡) → (𝑣 = (𝑟 + (i · 𝑠)) ↔ (2nd𝑡) = (𝑟 + (i · 𝑠))))
76anbi2d 464 . . . . . . . . 9 (𝑣 = (2nd𝑡) → (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ↔ ((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠)))))
87anbi1d 465 . . . . . . . 8 (𝑣 = (2nd𝑡) → ((((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
982rexbidv 2531 . . . . . . 7 (𝑣 = (2nd𝑡) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
1092rexbidv 2531 . . . . . 6 (𝑣 = (2nd𝑡) → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
115, 10elopabi 6281 . . . . 5 (𝑡 ∈ {⟨𝑢, 𝑣⟩ ∣ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))} → ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)))
12 df-ap 8655 . . . . 5 # = {⟨𝑢, 𝑣⟩ ∣ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))}
1311, 12eleq2s 2300 . . . 4 (𝑡 ∈ # → ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)))
1412relopabi 4803 . . . . . . . . . 10 Rel #
15 simp-5l 543 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 ∈ # )
16 1st2nd 6267 . . . . . . . . . 10 ((Rel # ∧ 𝑡 ∈ # ) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
1714, 15, 16sylancr 414 . . . . . . . . 9 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
18 simprll 537 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (1st𝑡) = (𝑝 + (i · 𝑞)))
19 simp-5r 544 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑝 ∈ ℝ)
2019recnd 8101 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑝 ∈ ℂ)
21 ax-icn 8020 . . . . . . . . . . . . . 14 i ∈ ℂ
2221a1i 9 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → i ∈ ℂ)
23 simp-4r 542 . . . . . . . . . . . . . 14 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑞 ∈ ℝ)
2423recnd 8101 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑞 ∈ ℂ)
2522, 24mulcld 8093 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (i · 𝑞) ∈ ℂ)
2620, 25addcld 8092 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (𝑝 + (i · 𝑞)) ∈ ℂ)
2718, 26eqeltrd 2282 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (1st𝑡) ∈ ℂ)
28 simprlr 538 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (2nd𝑡) = (𝑟 + (i · 𝑠)))
29 simpllr 534 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑟 ∈ ℝ)
3029recnd 8101 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑟 ∈ ℂ)
31 simplr 528 . . . . . . . . . . . . . 14 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑠 ∈ ℝ)
3231recnd 8101 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑠 ∈ ℂ)
3322, 32mulcld 8093 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (i · 𝑠) ∈ ℂ)
3430, 33addcld 8092 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (𝑟 + (i · 𝑠)) ∈ ℂ)
3528, 34eqeltrd 2282 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (2nd𝑡) ∈ ℂ)
3627, 35jca 306 . . . . . . . . 9 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → ((1st𝑡) ∈ ℂ ∧ (2nd𝑡) ∈ ℂ))
37 elxp6 6255 . . . . . . . . 9 (𝑡 ∈ (ℂ × ℂ) ↔ (𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩ ∧ ((1st𝑡) ∈ ℂ ∧ (2nd𝑡) ∈ ℂ)))
3817, 36, 37sylanbrc 417 . . . . . . . 8 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 ∈ (ℂ × ℂ))
3938rexlimdva2 2626 . . . . . . 7 ((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) → (∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4039rexlimdva 2623 . . . . . 6 (((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4140rexlimdva 2623 . . . . 5 ((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) → (∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4241rexlimdva 2623 . . . 4 (𝑡 ∈ # → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4313, 42mpd 13 . . 3 (𝑡 ∈ # → 𝑡 ∈ (ℂ × ℂ))
4443ssriv 3197 . 2 # ⊆ (ℂ × ℂ)
45 apirr 8678 . . . 4 (𝑥 ∈ ℂ → ¬ 𝑥 # 𝑥)
4645rgen 2559 . . 3 𝑥 ∈ ℂ ¬ 𝑥 # 𝑥
47 apsym 8679 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 # 𝑦𝑦 # 𝑥))
4847biimpd 144 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 # 𝑦𝑦 # 𝑥))
4948rgen2 2592 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥)
5046, 49pm3.2i 272 . 2 (∀𝑥 ∈ ℂ ¬ 𝑥 # 𝑥 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥))
51 apcotr 8680 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)))
5251rgen3 2593 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧))
53 apti 8695 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
5453biimprd 158 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (¬ 𝑥 # 𝑦𝑥 = 𝑦))
5554rgen2 2592 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦)
5652, 55pm3.2i 272 . 2 (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦))
57 dftap2 7363 . 2 ( # TAp ℂ ↔ ( # ⊆ (ℂ × ℂ) ∧ (∀𝑥 ∈ ℂ ¬ 𝑥 # 𝑥 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥)) ∧ (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦))))
5844, 50, 56, 57mpbir3an 1182 1 # TAp ℂ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710   = wceq 1373  wcel 2176  wral 2484  wrex 2485  wss 3166  cop 3636   class class class wbr 4044  {copab 4104   × cxp 4673  Rel wrel 4680  cfv 5271  (class class class)co 5944  1st c1st 6224  2nd c2nd 6225   TAp wtap 7361  cc 7923  cr 7924  ici 7927   + caddc 7928   · cmul 7930   # creap 8647   # cap 8654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pap 7360  df-tap 7362  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator