ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptap GIF version

Theorem aptap 8797
Description: Complex apartness (as defined at df-ap 8729) is a tight apartness (as defined at df-tap 7436). (Contributed by Jim Kingdon, 16-Feb-2025.)
Assertion
Ref Expression
aptap # TAp ℂ

Proof of Theorem aptap
Dummy variables 𝑞 𝑝 𝑟 𝑠 𝑡 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2236 . . . . . . . . . 10 (𝑢 = (1st𝑡) → (𝑢 = (𝑝 + (i · 𝑞)) ↔ (1st𝑡) = (𝑝 + (i · 𝑞))))
21anbi1d 465 . . . . . . . . 9 (𝑢 = (1st𝑡) → ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ↔ ((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠)))))
32anbi1d 465 . . . . . . . 8 (𝑢 = (1st𝑡) → (((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
432rexbidv 2555 . . . . . . 7 (𝑢 = (1st𝑡) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
542rexbidv 2555 . . . . . 6 (𝑢 = (1st𝑡) → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
6 eqeq1 2236 . . . . . . . . . 10 (𝑣 = (2nd𝑡) → (𝑣 = (𝑟 + (i · 𝑠)) ↔ (2nd𝑡) = (𝑟 + (i · 𝑠))))
76anbi2d 464 . . . . . . . . 9 (𝑣 = (2nd𝑡) → (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ↔ ((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠)))))
87anbi1d 465 . . . . . . . 8 (𝑣 = (2nd𝑡) → ((((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
982rexbidv 2555 . . . . . . 7 (𝑣 = (2nd𝑡) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
1092rexbidv 2555 . . . . . 6 (𝑣 = (2nd𝑡) → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
115, 10elopabi 6341 . . . . 5 (𝑡 ∈ {⟨𝑢, 𝑣⟩ ∣ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))} → ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)))
12 df-ap 8729 . . . . 5 # = {⟨𝑢, 𝑣⟩ ∣ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))}
1311, 12eleq2s 2324 . . . 4 (𝑡 ∈ # → ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)))
1412relopabi 4847 . . . . . . . . . 10 Rel #
15 simp-5l 543 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 ∈ # )
16 1st2nd 6327 . . . . . . . . . 10 ((Rel # ∧ 𝑡 ∈ # ) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
1714, 15, 16sylancr 414 . . . . . . . . 9 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
18 simprll 537 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (1st𝑡) = (𝑝 + (i · 𝑞)))
19 simp-5r 544 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑝 ∈ ℝ)
2019recnd 8175 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑝 ∈ ℂ)
21 ax-icn 8094 . . . . . . . . . . . . . 14 i ∈ ℂ
2221a1i 9 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → i ∈ ℂ)
23 simp-4r 542 . . . . . . . . . . . . . 14 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑞 ∈ ℝ)
2423recnd 8175 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑞 ∈ ℂ)
2522, 24mulcld 8167 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (i · 𝑞) ∈ ℂ)
2620, 25addcld 8166 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (𝑝 + (i · 𝑞)) ∈ ℂ)
2718, 26eqeltrd 2306 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (1st𝑡) ∈ ℂ)
28 simprlr 538 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (2nd𝑡) = (𝑟 + (i · 𝑠)))
29 simpllr 534 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑟 ∈ ℝ)
3029recnd 8175 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑟 ∈ ℂ)
31 simplr 528 . . . . . . . . . . . . . 14 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑠 ∈ ℝ)
3231recnd 8175 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑠 ∈ ℂ)
3322, 32mulcld 8167 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (i · 𝑠) ∈ ℂ)
3430, 33addcld 8166 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (𝑟 + (i · 𝑠)) ∈ ℂ)
3528, 34eqeltrd 2306 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (2nd𝑡) ∈ ℂ)
3627, 35jca 306 . . . . . . . . 9 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → ((1st𝑡) ∈ ℂ ∧ (2nd𝑡) ∈ ℂ))
37 elxp6 6315 . . . . . . . . 9 (𝑡 ∈ (ℂ × ℂ) ↔ (𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩ ∧ ((1st𝑡) ∈ ℂ ∧ (2nd𝑡) ∈ ℂ)))
3817, 36, 37sylanbrc 417 . . . . . . . 8 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 ∈ (ℂ × ℂ))
3938rexlimdva2 2651 . . . . . . 7 ((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) → (∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4039rexlimdva 2648 . . . . . 6 (((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4140rexlimdva 2648 . . . . 5 ((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) → (∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4241rexlimdva 2648 . . . 4 (𝑡 ∈ # → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4313, 42mpd 13 . . 3 (𝑡 ∈ # → 𝑡 ∈ (ℂ × ℂ))
4443ssriv 3228 . 2 # ⊆ (ℂ × ℂ)
45 apirr 8752 . . . 4 (𝑥 ∈ ℂ → ¬ 𝑥 # 𝑥)
4645rgen 2583 . . 3 𝑥 ∈ ℂ ¬ 𝑥 # 𝑥
47 apsym 8753 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 # 𝑦𝑦 # 𝑥))
4847biimpd 144 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 # 𝑦𝑦 # 𝑥))
4948rgen2 2616 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥)
5046, 49pm3.2i 272 . 2 (∀𝑥 ∈ ℂ ¬ 𝑥 # 𝑥 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥))
51 apcotr 8754 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)))
5251rgen3 2617 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧))
53 apti 8769 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
5453biimprd 158 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (¬ 𝑥 # 𝑦𝑥 = 𝑦))
5554rgen2 2616 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦)
5652, 55pm3.2i 272 . 2 (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦))
57 dftap2 7437 . 2 ( # TAp ℂ ↔ ( # ⊆ (ℂ × ℂ) ∧ (∀𝑥 ∈ ℂ ¬ 𝑥 # 𝑥 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥)) ∧ (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦))))
5844, 50, 56, 57mpbir3an 1203 1 # TAp ℂ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  wral 2508  wrex 2509  wss 3197  cop 3669   class class class wbr 4083  {copab 4144   × cxp 4717  Rel wrel 4724  cfv 5318  (class class class)co 6001  1st c1st 6284  2nd c2nd 6285   TAp wtap 7435  cc 7997  cr 7998  ici 8001   + caddc 8002   · cmul 8004   # creap 8721   # cap 8728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pap 7434  df-tap 7436  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator