ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptap GIF version

Theorem aptap 8669
Description: Complex apartness (as defined at df-ap 8601) is a tight apartness (as defined at df-tap 7310). (Contributed by Jim Kingdon, 16-Feb-2025.)
Assertion
Ref Expression
aptap # TAp ℂ

Proof of Theorem aptap
Dummy variables 𝑞 𝑝 𝑟 𝑠 𝑡 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2200 . . . . . . . . . 10 (𝑢 = (1st𝑡) → (𝑢 = (𝑝 + (i · 𝑞)) ↔ (1st𝑡) = (𝑝 + (i · 𝑞))))
21anbi1d 465 . . . . . . . . 9 (𝑢 = (1st𝑡) → ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ↔ ((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠)))))
32anbi1d 465 . . . . . . . 8 (𝑢 = (1st𝑡) → (((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
432rexbidv 2519 . . . . . . 7 (𝑢 = (1st𝑡) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
542rexbidv 2519 . . . . . 6 (𝑢 = (1st𝑡) → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
6 eqeq1 2200 . . . . . . . . . 10 (𝑣 = (2nd𝑡) → (𝑣 = (𝑟 + (i · 𝑠)) ↔ (2nd𝑡) = (𝑟 + (i · 𝑠))))
76anbi2d 464 . . . . . . . . 9 (𝑣 = (2nd𝑡) → (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ↔ ((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠)))))
87anbi1d 465 . . . . . . . 8 (𝑣 = (2nd𝑡) → ((((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
982rexbidv 2519 . . . . . . 7 (𝑣 = (2nd𝑡) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
1092rexbidv 2519 . . . . . 6 (𝑣 = (2nd𝑡) → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) ↔ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))))
115, 10elopabi 6248 . . . . 5 (𝑡 ∈ {⟨𝑢, 𝑣⟩ ∣ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))} → ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)))
12 df-ap 8601 . . . . 5 # = {⟨𝑢, 𝑣⟩ ∣ ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ((𝑢 = (𝑝 + (i · 𝑞)) ∧ 𝑣 = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))}
1311, 12eleq2s 2288 . . . 4 (𝑡 ∈ # → ∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)))
1412relopabi 4787 . . . . . . . . . 10 Rel #
15 simp-5l 543 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 ∈ # )
16 1st2nd 6234 . . . . . . . . . 10 ((Rel # ∧ 𝑡 ∈ # ) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
1714, 15, 16sylancr 414 . . . . . . . . 9 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
18 simprll 537 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (1st𝑡) = (𝑝 + (i · 𝑞)))
19 simp-5r 544 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑝 ∈ ℝ)
2019recnd 8048 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑝 ∈ ℂ)
21 ax-icn 7967 . . . . . . . . . . . . . 14 i ∈ ℂ
2221a1i 9 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → i ∈ ℂ)
23 simp-4r 542 . . . . . . . . . . . . . 14 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑞 ∈ ℝ)
2423recnd 8048 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑞 ∈ ℂ)
2522, 24mulcld 8040 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (i · 𝑞) ∈ ℂ)
2620, 25addcld 8039 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (𝑝 + (i · 𝑞)) ∈ ℂ)
2718, 26eqeltrd 2270 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (1st𝑡) ∈ ℂ)
28 simprlr 538 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (2nd𝑡) = (𝑟 + (i · 𝑠)))
29 simpllr 534 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑟 ∈ ℝ)
3029recnd 8048 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑟 ∈ ℂ)
31 simplr 528 . . . . . . . . . . . . . 14 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑠 ∈ ℝ)
3231recnd 8048 . . . . . . . . . . . . 13 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑠 ∈ ℂ)
3322, 32mulcld 8040 . . . . . . . . . . . 12 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (i · 𝑠) ∈ ℂ)
3430, 33addcld 8039 . . . . . . . . . . 11 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (𝑟 + (i · 𝑠)) ∈ ℂ)
3528, 34eqeltrd 2270 . . . . . . . . . 10 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → (2nd𝑡) ∈ ℂ)
3627, 35jca 306 . . . . . . . . 9 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → ((1st𝑡) ∈ ℂ ∧ (2nd𝑡) ∈ ℂ))
37 elxp6 6222 . . . . . . . . 9 (𝑡 ∈ (ℂ × ℂ) ↔ (𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩ ∧ ((1st𝑡) ∈ ℂ ∧ (2nd𝑡) ∈ ℂ)))
3817, 36, 37sylanbrc 417 . . . . . . . 8 ((((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) ∧ 𝑠 ∈ ℝ) ∧ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠))) → 𝑡 ∈ (ℂ × ℂ))
3938rexlimdva2 2614 . . . . . . 7 ((((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) ∧ 𝑟 ∈ ℝ) → (∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4039rexlimdva 2611 . . . . . 6 (((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) ∧ 𝑞 ∈ ℝ) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4140rexlimdva 2611 . . . . 5 ((𝑡 ∈ # ∧ 𝑝 ∈ ℝ) → (∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4241rexlimdva 2611 . . . 4 (𝑡 ∈ # → (∃𝑝 ∈ ℝ ∃𝑞 ∈ ℝ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ (((1st𝑡) = (𝑝 + (i · 𝑞)) ∧ (2nd𝑡) = (𝑟 + (i · 𝑠))) ∧ (𝑝 # 𝑟𝑞 # 𝑠)) → 𝑡 ∈ (ℂ × ℂ)))
4313, 42mpd 13 . . 3 (𝑡 ∈ # → 𝑡 ∈ (ℂ × ℂ))
4443ssriv 3183 . 2 # ⊆ (ℂ × ℂ)
45 apirr 8624 . . . 4 (𝑥 ∈ ℂ → ¬ 𝑥 # 𝑥)
4645rgen 2547 . . 3 𝑥 ∈ ℂ ¬ 𝑥 # 𝑥
47 apsym 8625 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 # 𝑦𝑦 # 𝑥))
4847biimpd 144 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 # 𝑦𝑦 # 𝑥))
4948rgen2 2580 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥)
5046, 49pm3.2i 272 . 2 (∀𝑥 ∈ ℂ ¬ 𝑥 # 𝑥 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥))
51 apcotr 8626 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)))
5251rgen3 2581 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧))
53 apti 8641 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
5453biimprd 158 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (¬ 𝑥 # 𝑦𝑥 = 𝑦))
5554rgen2 2580 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦)
5652, 55pm3.2i 272 . 2 (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦))
57 dftap2 7311 . 2 ( # TAp ℂ ↔ ( # ⊆ (ℂ × ℂ) ∧ (∀𝑥 ∈ ℂ ¬ 𝑥 # 𝑥 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 # 𝑦𝑦 # 𝑥)) ∧ (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ (𝑥 # 𝑦 → (𝑥 # 𝑧𝑦 # 𝑧)) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (¬ 𝑥 # 𝑦𝑥 = 𝑦))))
5844, 50, 56, 57mpbir3an 1181 1 # TAp ℂ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164  wral 2472  wrex 2473  wss 3153  cop 3621   class class class wbr 4029  {copab 4089   × cxp 4657  Rel wrel 4664  cfv 5254  (class class class)co 5918  1st c1st 6191  2nd c2nd 6192   TAp wtap 7309  cc 7870  cr 7871  ici 7874   + caddc 7875   · cmul 7877   # creap 8593   # cap 8600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pap 7308  df-tap 7310  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator