ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprcl GIF version

Theorem aprcl 8432
Description: Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
Assertion
Ref Expression
aprcl (𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))

Proof of Theorem aprcl
Dummy variables 𝑟 𝑠 𝑡 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 3938 . . . 4 (𝐴 # 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ # )
2 eqeq1 2147 . . . . . . . . . 10 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (𝑥 = (𝑟 + (i · 𝑠)) ↔ (1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠))))
32anbi1d 461 . . . . . . . . 9 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢)))))
43anbi1d 461 . . . . . . . 8 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
542rexbidv 2463 . . . . . . 7 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
652rexbidv 2463 . . . . . 6 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
7 eqeq1 2147 . . . . . . . . . 10 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (𝑦 = (𝑡 + (i · 𝑢)) ↔ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
87anbi2d 460 . . . . . . . . 9 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))))
98anbi1d 461 . . . . . . . 8 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → ((((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
1092rexbidv 2463 . . . . . . 7 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
11102rexbidv 2463 . . . . . 6 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
126, 11elopabi 6101 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))} → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
13 df-ap 8368 . . . . 5 # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
1412, 13eleq2s 2235 . . . 4 (⟨𝐴, 𝐵⟩ ∈ # → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
151, 14sylbi 120 . . 3 (𝐴 # 𝐵 → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
16 simpl 108 . . . . . . 7 ((((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
1716reximi 2532 . . . . . 6 (∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
1817reximi 2532 . . . . 5 (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
1918reximi 2532 . . . 4 (∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
2019reximi 2532 . . 3 (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
2115, 20syl 14 . 2 (𝐴 # 𝐵 → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
2213relopabi 4673 . . . . . . . . . 10 Rel #
2322brrelex1i 4590 . . . . . . . . 9 (𝐴 # 𝐵𝐴 ∈ V)
2423ad3antrrr 484 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐴 ∈ V)
2522brrelex2i 4591 . . . . . . . . 9 (𝐴 # 𝐵𝐵 ∈ V)
2625ad3antrrr 484 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐵 ∈ V)
27 op1stg 6056 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
2824, 26, 27syl2anc 409 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
29 simprl 521 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)))
30 simprl 521 . . . . . . . . . . 11 ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → 𝑟 ∈ ℝ)
3130ad2antrr 480 . . . . . . . . . 10 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑟 ∈ ℝ)
3231recnd 7818 . . . . . . . . 9 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑟 ∈ ℂ)
33 ax-icn 7739 . . . . . . . . . . 11 i ∈ ℂ
3433a1i 9 . . . . . . . . . 10 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → i ∈ ℂ)
35 simprr 522 . . . . . . . . . . . 12 ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → 𝑠 ∈ ℝ)
3635ad2antrr 480 . . . . . . . . . . 11 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑠 ∈ ℝ)
3736recnd 7818 . . . . . . . . . 10 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑠 ∈ ℂ)
3834, 37mulcld 7810 . . . . . . . . 9 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (i · 𝑠) ∈ ℂ)
3932, 38addcld 7809 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (𝑟 + (i · 𝑠)) ∈ ℂ)
4029, 39eqeltrd 2217 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (1st ‘⟨𝐴, 𝐵⟩) ∈ ℂ)
4128, 40eqeltrrd 2218 . . . . . 6 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐴 ∈ ℂ)
42 op2ndg 6057 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4324, 26, 42syl2anc 409 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
44 simprr 522 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))
45 recn 7777 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
4645adantr 274 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → 𝑡 ∈ ℂ)
4733a1i 9 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → i ∈ ℂ)
48 recn 7777 . . . . . . . . . . . . 13 (𝑢 ∈ ℝ → 𝑢 ∈ ℂ)
4948adantl 275 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℂ)
5047, 49mulcld 7810 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (i · 𝑢) ∈ ℂ)
5146, 50addcld 7809 . . . . . . . . . 10 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑡 + (i · 𝑢)) ∈ ℂ)
5251adantl 275 . . . . . . . . 9 (((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (𝑡 + (i · 𝑢)) ∈ ℂ)
5352adantr 274 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (𝑡 + (i · 𝑢)) ∈ ℂ)
5444, 53eqeltrd 2217 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (2nd ‘⟨𝐴, 𝐵⟩) ∈ ℂ)
5543, 54eqeltrrd 2218 . . . . . 6 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐵 ∈ ℂ)
5641, 55jca 304 . . . . 5 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
5756ex 114 . . . 4 (((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)))
5857rexlimdvva 2560 . . 3 ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)))
5958rexlimdvva 2560 . 2 (𝐴 # 𝐵 → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)))
6021, 59mpd 13 1 (𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1332  wcel 1481  wrex 2418  Vcvv 2689  cop 3535   class class class wbr 3937  {copab 3996  cfv 5131  (class class class)co 5782  1st c1st 6044  2nd c2nd 6045  cc 7642  cr 7643  ici 7646   + caddc 7647   · cmul 7649   # creap 8360   # cap 8367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-resscn 7736  ax-icn 7739  ax-addcl 7740  ax-mulcl 7742
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fo 5137  df-fv 5139  df-1st 6046  df-2nd 6047  df-ap 8368
This theorem is referenced by:  apsscn  8433
  Copyright terms: Public domain W3C validator