ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprcl GIF version

Theorem aprcl 8673
Description: Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
Assertion
Ref Expression
aprcl (𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))

Proof of Theorem aprcl
Dummy variables 𝑟 𝑠 𝑡 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4034 . . . 4 (𝐴 # 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ # )
2 eqeq1 2203 . . . . . . . . . 10 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (𝑥 = (𝑟 + (i · 𝑠)) ↔ (1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠))))
32anbi1d 465 . . . . . . . . 9 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢)))))
43anbi1d 465 . . . . . . . 8 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
542rexbidv 2522 . . . . . . 7 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
652rexbidv 2522 . . . . . 6 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
7 eqeq1 2203 . . . . . . . . . 10 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (𝑦 = (𝑡 + (i · 𝑢)) ↔ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
87anbi2d 464 . . . . . . . . 9 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))))
98anbi1d 465 . . . . . . . 8 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → ((((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
1092rexbidv 2522 . . . . . . 7 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
11102rexbidv 2522 . . . . . 6 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
126, 11elopabi 6253 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))} → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
13 df-ap 8609 . . . . 5 # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
1412, 13eleq2s 2291 . . . 4 (⟨𝐴, 𝐵⟩ ∈ # → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
151, 14sylbi 121 . . 3 (𝐴 # 𝐵 → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
16 simpl 109 . . . . . . 7 ((((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
1716reximi 2594 . . . . . 6 (∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
1817reximi 2594 . . . . 5 (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
1918reximi 2594 . . . 4 (∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
2019reximi 2594 . . 3 (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
2115, 20syl 14 . 2 (𝐴 # 𝐵 → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
2213relopabi 4791 . . . . . . . . . 10 Rel #
2322brrelex1i 4706 . . . . . . . . 9 (𝐴 # 𝐵𝐴 ∈ V)
2423ad3antrrr 492 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐴 ∈ V)
2522brrelex2i 4707 . . . . . . . . 9 (𝐴 # 𝐵𝐵 ∈ V)
2625ad3antrrr 492 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐵 ∈ V)
27 op1stg 6208 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
2824, 26, 27syl2anc 411 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
29 simprl 529 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)))
30 simprl 529 . . . . . . . . . . 11 ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → 𝑟 ∈ ℝ)
3130ad2antrr 488 . . . . . . . . . 10 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑟 ∈ ℝ)
3231recnd 8055 . . . . . . . . 9 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑟 ∈ ℂ)
33 ax-icn 7974 . . . . . . . . . . 11 i ∈ ℂ
3433a1i 9 . . . . . . . . . 10 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → i ∈ ℂ)
35 simprr 531 . . . . . . . . . . . 12 ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → 𝑠 ∈ ℝ)
3635ad2antrr 488 . . . . . . . . . . 11 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑠 ∈ ℝ)
3736recnd 8055 . . . . . . . . . 10 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑠 ∈ ℂ)
3834, 37mulcld 8047 . . . . . . . . 9 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (i · 𝑠) ∈ ℂ)
3932, 38addcld 8046 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (𝑟 + (i · 𝑠)) ∈ ℂ)
4029, 39eqeltrd 2273 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (1st ‘⟨𝐴, 𝐵⟩) ∈ ℂ)
4128, 40eqeltrrd 2274 . . . . . 6 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐴 ∈ ℂ)
42 op2ndg 6209 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4324, 26, 42syl2anc 411 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
44 simprr 531 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))
45 recn 8012 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
4645adantr 276 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → 𝑡 ∈ ℂ)
4733a1i 9 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → i ∈ ℂ)
48 recn 8012 . . . . . . . . . . . . 13 (𝑢 ∈ ℝ → 𝑢 ∈ ℂ)
4948adantl 277 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℂ)
5047, 49mulcld 8047 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (i · 𝑢) ∈ ℂ)
5146, 50addcld 8046 . . . . . . . . . 10 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑡 + (i · 𝑢)) ∈ ℂ)
5251adantl 277 . . . . . . . . 9 (((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (𝑡 + (i · 𝑢)) ∈ ℂ)
5352adantr 276 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (𝑡 + (i · 𝑢)) ∈ ℂ)
5444, 53eqeltrd 2273 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (2nd ‘⟨𝐴, 𝐵⟩) ∈ ℂ)
5543, 54eqeltrrd 2274 . . . . . 6 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐵 ∈ ℂ)
5641, 55jca 306 . . . . 5 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
5756ex 115 . . . 4 (((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)))
5857rexlimdvva 2622 . . 3 ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)))
5958rexlimdvva 2622 . 2 (𝐴 # 𝐵 → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)))
6021, 59mpd 13 1 (𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167  wrex 2476  Vcvv 2763  cop 3625   class class class wbr 4033  {copab 4093  cfv 5258  (class class class)co 5922  1st c1st 6196  2nd c2nd 6197  cc 7877  cr 7878  ici 7881   + caddc 7882   · cmul 7884   # creap 8601   # cap 8608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-resscn 7971  ax-icn 7974  ax-addcl 7975  ax-mulcl 7977
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266  df-1st 6198  df-2nd 6199  df-ap 8609
This theorem is referenced by:  apsscn  8674
  Copyright terms: Public domain W3C validator