Step | Hyp | Ref
| Expression |
1 | | df-br 3990 |
. . . 4
⊢ (𝐴 # 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ # ) |
2 | | eqeq1 2177 |
. . . . . . . . . 10
⊢ (𝑥 = (1st
‘〈𝐴, 𝐵〉) → (𝑥 = (𝑟 + (i · 𝑠)) ↔ (1st ‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)))) |
3 | 2 | anbi1d 462 |
. . . . . . . . 9
⊢ (𝑥 = (1st
‘〈𝐴, 𝐵〉) → ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))))) |
4 | 3 | anbi1d 462 |
. . . . . . . 8
⊢ (𝑥 = (1st
‘〈𝐴, 𝐵〉) → (((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) ↔ (((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)))) |
5 | 4 | 2rexbidv 2495 |
. . . . . . 7
⊢ (𝑥 = (1st
‘〈𝐴, 𝐵〉) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)))) |
6 | 5 | 2rexbidv 2495 |
. . . . . 6
⊢ (𝑥 = (1st
‘〈𝐴, 𝐵〉) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)))) |
7 | | eqeq1 2177 |
. . . . . . . . . 10
⊢ (𝑦 = (2nd
‘〈𝐴, 𝐵〉) → (𝑦 = (𝑡 + (i · 𝑢)) ↔ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) |
8 | 7 | anbi2d 461 |
. . . . . . . . 9
⊢ (𝑦 = (2nd
‘〈𝐴, 𝐵〉) → (((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))))) |
9 | 8 | anbi1d 462 |
. . . . . . . 8
⊢ (𝑦 = (2nd
‘〈𝐴, 𝐵〉) →
((((1st ‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) ↔ (((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)))) |
10 | 9 | 2rexbidv 2495 |
. . . . . . 7
⊢ (𝑦 = (2nd
‘〈𝐴, 𝐵〉) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ
(((1st ‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)))) |
11 | 10 | 2rexbidv 2495 |
. . . . . 6
⊢ (𝑦 = (2nd
‘〈𝐴, 𝐵〉) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ
(((1st ‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)))) |
12 | 6, 11 | elopabi 6174 |
. . . . 5
⊢
(〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢))} → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢))) |
13 | | df-ap 8501 |
. . . . 5
⊢ # =
{〈𝑥, 𝑦〉 ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢))} |
14 | 12, 13 | eleq2s 2265 |
. . . 4
⊢
(〈𝐴, 𝐵〉 ∈ # →
∃𝑟 ∈ ℝ
∃𝑠 ∈ ℝ
∃𝑡 ∈ ℝ
∃𝑢 ∈ ℝ
(((1st ‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢))) |
15 | 1, 14 | sylbi 120 |
. . 3
⊢ (𝐴 # 𝐵 → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢))) |
16 | | simpl 108 |
. . . . . . 7
⊢
((((1st ‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) → ((1st ‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) |
17 | 16 | reximi 2567 |
. . . . . 6
⊢
(∃𝑢 ∈
ℝ (((1st ‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) → ∃𝑢 ∈ ℝ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) |
18 | 17 | reximi 2567 |
. . . . 5
⊢
(∃𝑡 ∈
ℝ ∃𝑢 ∈
ℝ (((1st ‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) |
19 | 18 | reximi 2567 |
. . . 4
⊢
(∃𝑠 ∈
ℝ ∃𝑡 ∈
ℝ ∃𝑢 ∈
ℝ (((1st ‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) → ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) |
20 | 19 | reximi 2567 |
. . 3
⊢
(∃𝑟 ∈
ℝ ∃𝑠 ∈
ℝ ∃𝑡 ∈
ℝ ∃𝑢 ∈
ℝ (((1st ‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢)) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) |
21 | 15, 20 | syl 14 |
. 2
⊢ (𝐴 # 𝐵 → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) |
22 | 13 | relopabi 4737 |
. . . . . . . . . 10
⊢ Rel
# |
23 | 22 | brrelex1i 4654 |
. . . . . . . . 9
⊢ (𝐴 # 𝐵 → 𝐴 ∈ V) |
24 | 23 | ad3antrrr 489 |
. . . . . . . 8
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → 𝐴 ∈ V) |
25 | 22 | brrelex2i 4655 |
. . . . . . . . 9
⊢ (𝐴 # 𝐵 → 𝐵 ∈ V) |
26 | 25 | ad3antrrr 489 |
. . . . . . . 8
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → 𝐵 ∈ V) |
27 | | op1stg 6129 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) →
(1st ‘〈𝐴, 𝐵〉) = 𝐴) |
28 | 24, 26, 27 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → (1st
‘〈𝐴, 𝐵〉) = 𝐴) |
29 | | simprl 526 |
. . . . . . . 8
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → (1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠))) |
30 | | simprl 526 |
. . . . . . . . . . 11
⊢ ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → 𝑟 ∈ ℝ) |
31 | 30 | ad2antrr 485 |
. . . . . . . . . 10
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → 𝑟 ∈ ℝ) |
32 | 31 | recnd 7948 |
. . . . . . . . 9
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → 𝑟 ∈ ℂ) |
33 | | ax-icn 7869 |
. . . . . . . . . . 11
⊢ i ∈
ℂ |
34 | 33 | a1i 9 |
. . . . . . . . . 10
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → i ∈
ℂ) |
35 | | simprr 527 |
. . . . . . . . . . . 12
⊢ ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → 𝑠 ∈ ℝ) |
36 | 35 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → 𝑠 ∈ ℝ) |
37 | 36 | recnd 7948 |
. . . . . . . . . 10
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → 𝑠 ∈ ℂ) |
38 | 34, 37 | mulcld 7940 |
. . . . . . . . 9
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → (i · 𝑠) ∈ ℂ) |
39 | 32, 38 | addcld 7939 |
. . . . . . . 8
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → (𝑟 + (i · 𝑠)) ∈ ℂ) |
40 | 29, 39 | eqeltrd 2247 |
. . . . . . 7
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → (1st
‘〈𝐴, 𝐵〉) ∈
ℂ) |
41 | 28, 40 | eqeltrrd 2248 |
. . . . . 6
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → 𝐴 ∈ ℂ) |
42 | | op2ndg 6130 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) →
(2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
43 | 24, 26, 42 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → (2nd
‘〈𝐴, 𝐵〉) = 𝐵) |
44 | | simprr 527 |
. . . . . . . 8
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → (2nd
‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) |
45 | | recn 7907 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ → 𝑡 ∈
ℂ) |
46 | 45 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → 𝑡 ∈
ℂ) |
47 | 33 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → i ∈
ℂ) |
48 | | recn 7907 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ ℝ → 𝑢 ∈
ℂ) |
49 | 48 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → 𝑢 ∈
ℂ) |
50 | 47, 49 | mulcld 7940 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (i
· 𝑢) ∈
ℂ) |
51 | 46, 50 | addcld 7939 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑡 + (i · 𝑢)) ∈
ℂ) |
52 | 51 | adantl 275 |
. . . . . . . . 9
⊢ (((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (𝑡 + (i · 𝑢)) ∈ ℂ) |
53 | 52 | adantr 274 |
. . . . . . . 8
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → (𝑡 + (i · 𝑢)) ∈ ℂ) |
54 | 44, 53 | eqeltrd 2247 |
. . . . . . 7
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → (2nd
‘〈𝐴, 𝐵〉) ∈
ℂ) |
55 | 43, 54 | eqeltrrd 2248 |
. . . . . 6
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → 𝐵 ∈ ℂ) |
56 | 41, 55 | jca 304 |
. . . . 5
⊢ ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢)))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
57 | 56 | ex 114 |
. . . 4
⊢ (((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))) |
58 | 57 | rexlimdvva 2595 |
. . 3
⊢ ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))) |
59 | 58 | rexlimdvva 2595 |
. 2
⊢ (𝐴 # 𝐵 → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st
‘〈𝐴, 𝐵〉) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘〈𝐴, 𝐵〉) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))) |
60 | 21, 59 | mpd 13 |
1
⊢ (𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |