ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprcl GIF version

Theorem aprcl 8544
Description: Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
Assertion
Ref Expression
aprcl (𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))

Proof of Theorem aprcl
Dummy variables 𝑟 𝑠 𝑡 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 3983 . . . 4 (𝐴 # 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ # )
2 eqeq1 2172 . . . . . . . . . 10 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (𝑥 = (𝑟 + (i · 𝑠)) ↔ (1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠))))
32anbi1d 461 . . . . . . . . 9 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢)))))
43anbi1d 461 . . . . . . . 8 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
542rexbidv 2491 . . . . . . 7 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
652rexbidv 2491 . . . . . 6 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
7 eqeq1 2172 . . . . . . . . . 10 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (𝑦 = (𝑡 + (i · 𝑢)) ↔ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
87anbi2d 460 . . . . . . . . 9 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))))
98anbi1d 461 . . . . . . . 8 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → ((((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
1092rexbidv 2491 . . . . . . 7 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
11102rexbidv 2491 . . . . . 6 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
126, 11elopabi 6163 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))} → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
13 df-ap 8480 . . . . 5 # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
1412, 13eleq2s 2261 . . . 4 (⟨𝐴, 𝐵⟩ ∈ # → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
151, 14sylbi 120 . . 3 (𝐴 # 𝐵 → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
16 simpl 108 . . . . . . 7 ((((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
1716reximi 2563 . . . . . 6 (∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
1817reximi 2563 . . . . 5 (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
1918reximi 2563 . . . 4 (∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
2019reximi 2563 . . 3 (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
2115, 20syl 14 . 2 (𝐴 # 𝐵 → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
2213relopabi 4730 . . . . . . . . . 10 Rel #
2322brrelex1i 4647 . . . . . . . . 9 (𝐴 # 𝐵𝐴 ∈ V)
2423ad3antrrr 484 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐴 ∈ V)
2522brrelex2i 4648 . . . . . . . . 9 (𝐴 # 𝐵𝐵 ∈ V)
2625ad3antrrr 484 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐵 ∈ V)
27 op1stg 6118 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
2824, 26, 27syl2anc 409 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
29 simprl 521 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)))
30 simprl 521 . . . . . . . . . . 11 ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → 𝑟 ∈ ℝ)
3130ad2antrr 480 . . . . . . . . . 10 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑟 ∈ ℝ)
3231recnd 7927 . . . . . . . . 9 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑟 ∈ ℂ)
33 ax-icn 7848 . . . . . . . . . . 11 i ∈ ℂ
3433a1i 9 . . . . . . . . . 10 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → i ∈ ℂ)
35 simprr 522 . . . . . . . . . . . 12 ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → 𝑠 ∈ ℝ)
3635ad2antrr 480 . . . . . . . . . . 11 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑠 ∈ ℝ)
3736recnd 7927 . . . . . . . . . 10 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑠 ∈ ℂ)
3834, 37mulcld 7919 . . . . . . . . 9 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (i · 𝑠) ∈ ℂ)
3932, 38addcld 7918 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (𝑟 + (i · 𝑠)) ∈ ℂ)
4029, 39eqeltrd 2243 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (1st ‘⟨𝐴, 𝐵⟩) ∈ ℂ)
4128, 40eqeltrrd 2244 . . . . . 6 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐴 ∈ ℂ)
42 op2ndg 6119 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4324, 26, 42syl2anc 409 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
44 simprr 522 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))
45 recn 7886 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
4645adantr 274 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → 𝑡 ∈ ℂ)
4733a1i 9 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → i ∈ ℂ)
48 recn 7886 . . . . . . . . . . . . 13 (𝑢 ∈ ℝ → 𝑢 ∈ ℂ)
4948adantl 275 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℂ)
5047, 49mulcld 7919 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (i · 𝑢) ∈ ℂ)
5146, 50addcld 7918 . . . . . . . . . 10 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑡 + (i · 𝑢)) ∈ ℂ)
5251adantl 275 . . . . . . . . 9 (((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (𝑡 + (i · 𝑢)) ∈ ℂ)
5352adantr 274 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (𝑡 + (i · 𝑢)) ∈ ℂ)
5444, 53eqeltrd 2243 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (2nd ‘⟨𝐴, 𝐵⟩) ∈ ℂ)
5543, 54eqeltrrd 2244 . . . . . 6 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐵 ∈ ℂ)
5641, 55jca 304 . . . . 5 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
5756ex 114 . . . 4 (((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)))
5857rexlimdvva 2591 . . 3 ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)))
5958rexlimdvva 2591 . 2 (𝐴 # 𝐵 → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)))
6021, 59mpd 13 1 (𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1343  wcel 2136  wrex 2445  Vcvv 2726  cop 3579   class class class wbr 3982  {copab 4042  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  cc 7751  cr 7752  ici 7755   + caddc 7756   · cmul 7758   # creap 8472   # cap 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-resscn 7845  ax-icn 7848  ax-addcl 7849  ax-mulcl 7851
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-1st 6108  df-2nd 6109  df-ap 8480
This theorem is referenced by:  apsscn  8545
  Copyright terms: Public domain W3C validator