ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprcl GIF version

Theorem aprcl 8667
Description: Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
Assertion
Ref Expression
aprcl (𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))

Proof of Theorem aprcl
Dummy variables 𝑟 𝑠 𝑡 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4031 . . . 4 (𝐴 # 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ # )
2 eqeq1 2200 . . . . . . . . . 10 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (𝑥 = (𝑟 + (i · 𝑠)) ↔ (1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠))))
32anbi1d 465 . . . . . . . . 9 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢)))))
43anbi1d 465 . . . . . . . 8 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
542rexbidv 2519 . . . . . . 7 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
652rexbidv 2519 . . . . . 6 (𝑥 = (1st ‘⟨𝐴, 𝐵⟩) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
7 eqeq1 2200 . . . . . . . . . 10 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (𝑦 = (𝑡 + (i · 𝑢)) ↔ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
87anbi2d 464 . . . . . . . . 9 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))))
98anbi1d 465 . . . . . . . 8 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → ((((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
1092rexbidv 2519 . . . . . . 7 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
11102rexbidv 2519 . . . . . 6 (𝑦 = (2nd ‘⟨𝐴, 𝐵⟩) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
126, 11elopabi 6250 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))} → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
13 df-ap 8603 . . . . 5 # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
1412, 13eleq2s 2288 . . . 4 (⟨𝐴, 𝐵⟩ ∈ # → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
151, 14sylbi 121 . . 3 (𝐴 # 𝐵 → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
16 simpl 109 . . . . . . 7 ((((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
1716reximi 2591 . . . . . 6 (∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
1817reximi 2591 . . . . 5 (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
1918reximi 2591 . . . 4 (∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
2019reximi 2591 . . 3 (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
2115, 20syl 14 . 2 (𝐴 # 𝐵 → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))))
2213relopabi 4788 . . . . . . . . . 10 Rel #
2322brrelex1i 4703 . . . . . . . . 9 (𝐴 # 𝐵𝐴 ∈ V)
2423ad3antrrr 492 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐴 ∈ V)
2522brrelex2i 4704 . . . . . . . . 9 (𝐴 # 𝐵𝐵 ∈ V)
2625ad3antrrr 492 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐵 ∈ V)
27 op1stg 6205 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
2824, 26, 27syl2anc 411 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
29 simprl 529 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)))
30 simprl 529 . . . . . . . . . . 11 ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → 𝑟 ∈ ℝ)
3130ad2antrr 488 . . . . . . . . . 10 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑟 ∈ ℝ)
3231recnd 8050 . . . . . . . . 9 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑟 ∈ ℂ)
33 ax-icn 7969 . . . . . . . . . . 11 i ∈ ℂ
3433a1i 9 . . . . . . . . . 10 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → i ∈ ℂ)
35 simprr 531 . . . . . . . . . . . 12 ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → 𝑠 ∈ ℝ)
3635ad2antrr 488 . . . . . . . . . . 11 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑠 ∈ ℝ)
3736recnd 8050 . . . . . . . . . 10 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝑠 ∈ ℂ)
3834, 37mulcld 8042 . . . . . . . . 9 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (i · 𝑠) ∈ ℂ)
3932, 38addcld 8041 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (𝑟 + (i · 𝑠)) ∈ ℂ)
4029, 39eqeltrd 2270 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (1st ‘⟨𝐴, 𝐵⟩) ∈ ℂ)
4128, 40eqeltrrd 2271 . . . . . 6 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐴 ∈ ℂ)
42 op2ndg 6206 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4324, 26, 42syl2anc 411 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
44 simprr 531 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))
45 recn 8007 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
4645adantr 276 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → 𝑡 ∈ ℂ)
4733a1i 9 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → i ∈ ℂ)
48 recn 8007 . . . . . . . . . . . . 13 (𝑢 ∈ ℝ → 𝑢 ∈ ℂ)
4948adantl 277 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℂ)
5047, 49mulcld 8042 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (i · 𝑢) ∈ ℂ)
5146, 50addcld 8041 . . . . . . . . . 10 ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑡 + (i · 𝑢)) ∈ ℂ)
5251adantl 277 . . . . . . . . 9 (((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (𝑡 + (i · 𝑢)) ∈ ℂ)
5352adantr 276 . . . . . . . 8 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (𝑡 + (i · 𝑢)) ∈ ℂ)
5444, 53eqeltrd 2270 . . . . . . 7 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (2nd ‘⟨𝐴, 𝐵⟩) ∈ ℂ)
5543, 54eqeltrrd 2271 . . . . . 6 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → 𝐵 ∈ ℂ)
5641, 55jca 306 . . . . 5 ((((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢)))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
5756ex 115 . . . 4 (((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)))
5857rexlimdvva 2619 . . 3 ((𝐴 # 𝐵 ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)))
5958rexlimdvva 2619 . 2 (𝐴 # 𝐵 → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((1st ‘⟨𝐴, 𝐵⟩) = (𝑟 + (i · 𝑠)) ∧ (2nd ‘⟨𝐴, 𝐵⟩) = (𝑡 + (i · 𝑢))) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)))
6021, 59mpd 13 1 (𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164  wrex 2473  Vcvv 2760  cop 3622   class class class wbr 4030  {copab 4090  cfv 5255  (class class class)co 5919  1st c1st 6193  2nd c2nd 6194  cc 7872  cr 7873  ici 7876   + caddc 7877   · cmul 7879   # creap 8595   # cap 8602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-resscn 7966  ax-icn 7969  ax-addcl 7970  ax-mulcl 7972
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-1st 6195  df-2nd 6196  df-ap 8603
This theorem is referenced by:  apsscn  8668
  Copyright terms: Public domain W3C validator