ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apti GIF version

Theorem apti 8582
Description: Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.)
Assertion
Ref Expression
apti ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด = ๐ต โ†” ยฌ ๐ด # ๐ต))

Proof of Theorem apti
Dummy variables ๐‘ค ๐‘ฅ ๐‘ฆ ๐‘ง are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7956 . . 3 (๐ด โˆˆ โ„‚ โ†’ โˆƒ๐‘ฅ โˆˆ โ„ โˆƒ๐‘ฆ โˆˆ โ„ ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ)))
21adantr 276 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ โˆƒ๐‘ฅ โˆˆ โ„ โˆƒ๐‘ฆ โˆˆ โ„ ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ)))
3 cnre 7956 . . . . . . 7 (๐ต โˆˆ โ„‚ โ†’ โˆƒ๐‘ง โˆˆ โ„ โˆƒ๐‘ค โˆˆ โ„ ๐ต = (๐‘ง + (i ยท ๐‘ค)))
43adantl 277 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ โˆƒ๐‘ง โˆˆ โ„ โˆƒ๐‘ค โˆˆ โ„ ๐ต = (๐‘ง + (i ยท ๐‘ค)))
54ad2antrr 488 . . . . 5 ((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โ†’ โˆƒ๐‘ง โˆˆ โ„ โˆƒ๐‘ค โˆˆ โ„ ๐ต = (๐‘ง + (i ยท ๐‘ค)))
6 simpr 110 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โ†’ (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„))
76ad3antrrr 492 . . . . . . . . 9 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„))
8 simplr 528 . . . . . . . . 9 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„))
9 cru 8562 . . . . . . . . 9 (((๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โ†’ ((๐‘ฅ + (i ยท ๐‘ฆ)) = (๐‘ง + (i ยท ๐‘ค)) โ†” (๐‘ฅ = ๐‘ง โˆง ๐‘ฆ = ๐‘ค)))
107, 8, 9syl2anc 411 . . . . . . . 8 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ ((๐‘ฅ + (i ยท ๐‘ฆ)) = (๐‘ง + (i ยท ๐‘ค)) โ†” (๐‘ฅ = ๐‘ง โˆง ๐‘ฆ = ๐‘ค)))
11 simpllr 534 . . . . . . . . 9 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ)))
12 simpr 110 . . . . . . . . 9 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ ๐ต = (๐‘ง + (i ยท ๐‘ค)))
1311, 12eqeq12d 2192 . . . . . . . 8 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ (๐ด = ๐ต โ†” (๐‘ฅ + (i ยท ๐‘ฆ)) = (๐‘ง + (i ยท ๐‘ค))))
14 apreim 8563 . . . . . . . . . . . 12 (((๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โ†’ ((๐‘ฅ + (i ยท ๐‘ฆ)) # (๐‘ง + (i ยท ๐‘ค)) โ†” (๐‘ฅ # ๐‘ง โˆจ ๐‘ฆ # ๐‘ค)))
1514notbid 667 . . . . . . . . . . 11 (((๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โ†’ (ยฌ (๐‘ฅ + (i ยท ๐‘ฆ)) # (๐‘ง + (i ยท ๐‘ค)) โ†” ยฌ (๐‘ฅ # ๐‘ง โˆจ ๐‘ฆ # ๐‘ค)))
16 ioran 752 . . . . . . . . . . 11 (ยฌ (๐‘ฅ # ๐‘ง โˆจ ๐‘ฆ # ๐‘ค) โ†” (ยฌ ๐‘ฅ # ๐‘ง โˆง ยฌ ๐‘ฆ # ๐‘ค))
1715, 16bitrdi 196 . . . . . . . . . 10 (((๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โ†’ (ยฌ (๐‘ฅ + (i ยท ๐‘ฆ)) # (๐‘ง + (i ยท ๐‘ค)) โ†” (ยฌ ๐‘ฅ # ๐‘ง โˆง ยฌ ๐‘ฆ # ๐‘ค)))
187, 8, 17syl2anc 411 . . . . . . . . 9 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ (ยฌ (๐‘ฅ + (i ยท ๐‘ฆ)) # (๐‘ง + (i ยท ๐‘ค)) โ†” (ยฌ ๐‘ฅ # ๐‘ง โˆง ยฌ ๐‘ฆ # ๐‘ค)))
1911, 12breq12d 4018 . . . . . . . . . 10 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ (๐ด # ๐ต โ†” (๐‘ฅ + (i ยท ๐‘ฆ)) # (๐‘ง + (i ยท ๐‘ค))))
2019notbid 667 . . . . . . . . 9 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ (ยฌ ๐ด # ๐ต โ†” ยฌ (๐‘ฅ + (i ยท ๐‘ฆ)) # (๐‘ง + (i ยท ๐‘ค))))
217simpld 112 . . . . . . . . . . 11 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ ๐‘ฅ โˆˆ โ„)
228simpld 112 . . . . . . . . . . 11 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ ๐‘ง โˆˆ โ„)
23 reapti 8539 . . . . . . . . . . . 12 ((๐‘ฅ โˆˆ โ„ โˆง ๐‘ง โˆˆ โ„) โ†’ (๐‘ฅ = ๐‘ง โ†” ยฌ ๐‘ฅ #โ„ ๐‘ง))
24 apreap 8547 . . . . . . . . . . . . 13 ((๐‘ฅ โˆˆ โ„ โˆง ๐‘ง โˆˆ โ„) โ†’ (๐‘ฅ # ๐‘ง โ†” ๐‘ฅ #โ„ ๐‘ง))
2524notbid 667 . . . . . . . . . . . 12 ((๐‘ฅ โˆˆ โ„ โˆง ๐‘ง โˆˆ โ„) โ†’ (ยฌ ๐‘ฅ # ๐‘ง โ†” ยฌ ๐‘ฅ #โ„ ๐‘ง))
2623, 25bitr4d 191 . . . . . . . . . . 11 ((๐‘ฅ โˆˆ โ„ โˆง ๐‘ง โˆˆ โ„) โ†’ (๐‘ฅ = ๐‘ง โ†” ยฌ ๐‘ฅ # ๐‘ง))
2721, 22, 26syl2anc 411 . . . . . . . . . 10 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ (๐‘ฅ = ๐‘ง โ†” ยฌ ๐‘ฅ # ๐‘ง))
287simprd 114 . . . . . . . . . . 11 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ ๐‘ฆ โˆˆ โ„)
298simprd 114 . . . . . . . . . . 11 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ ๐‘ค โˆˆ โ„)
30 reapti 8539 . . . . . . . . . . . 12 ((๐‘ฆ โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„) โ†’ (๐‘ฆ = ๐‘ค โ†” ยฌ ๐‘ฆ #โ„ ๐‘ค))
31 apreap 8547 . . . . . . . . . . . . 13 ((๐‘ฆ โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„) โ†’ (๐‘ฆ # ๐‘ค โ†” ๐‘ฆ #โ„ ๐‘ค))
3231notbid 667 . . . . . . . . . . . 12 ((๐‘ฆ โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„) โ†’ (ยฌ ๐‘ฆ # ๐‘ค โ†” ยฌ ๐‘ฆ #โ„ ๐‘ค))
3330, 32bitr4d 191 . . . . . . . . . . 11 ((๐‘ฆ โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„) โ†’ (๐‘ฆ = ๐‘ค โ†” ยฌ ๐‘ฆ # ๐‘ค))
3428, 29, 33syl2anc 411 . . . . . . . . . 10 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ (๐‘ฆ = ๐‘ค โ†” ยฌ ๐‘ฆ # ๐‘ค))
3527, 34anbi12d 473 . . . . . . . . 9 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ ((๐‘ฅ = ๐‘ง โˆง ๐‘ฆ = ๐‘ค) โ†” (ยฌ ๐‘ฅ # ๐‘ง โˆง ยฌ ๐‘ฆ # ๐‘ค)))
3618, 20, 353bitr4d 220 . . . . . . . 8 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ (ยฌ ๐ด # ๐ต โ†” (๐‘ฅ = ๐‘ง โˆง ๐‘ฆ = ๐‘ค)))
3710, 13, 363bitr4d 220 . . . . . . 7 ((((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โˆง ๐ต = (๐‘ง + (i ยท ๐‘ค))) โ†’ (๐ด = ๐ต โ†” ยฌ ๐ด # ๐ต))
3837ex 115 . . . . . 6 (((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โˆง (๐‘ง โˆˆ โ„ โˆง ๐‘ค โˆˆ โ„)) โ†’ (๐ต = (๐‘ง + (i ยท ๐‘ค)) โ†’ (๐ด = ๐ต โ†” ยฌ ๐ด # ๐ต)))
3938rexlimdvva 2602 . . . . 5 ((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โ†’ (โˆƒ๐‘ง โˆˆ โ„ โˆƒ๐‘ค โˆˆ โ„ ๐ต = (๐‘ง + (i ยท ๐‘ค)) โ†’ (๐ด = ๐ต โ†” ยฌ ๐ด # ๐ต)))
405, 39mpd 13 . . . 4 ((((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โˆง ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ))) โ†’ (๐ด = ๐ต โ†” ยฌ ๐ด # ๐ต))
4140ex 115 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐‘ฅ โˆˆ โ„ โˆง ๐‘ฆ โˆˆ โ„)) โ†’ (๐ด = (๐‘ฅ + (i ยท ๐‘ฆ)) โ†’ (๐ด = ๐ต โ†” ยฌ ๐ด # ๐ต)))
4241rexlimdvva 2602 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โˆƒ๐‘ฅ โˆˆ โ„ โˆƒ๐‘ฆ โˆˆ โ„ ๐ด = (๐‘ฅ + (i ยท ๐‘ฆ)) โ†’ (๐ด = ๐ต โ†” ยฌ ๐ด # ๐ต)))
432, 42mpd 13 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด = ๐ต โ†” ยฌ ๐ด # ๐ต))
Colors of variables: wff set class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆจ wo 708   = wceq 1353   โˆˆ wcel 2148  โˆƒwrex 2456   class class class wbr 4005  (class class class)co 5878  โ„‚cc 7812  โ„cr 7813  ici 7816   + caddc 7817   ยท cmul 7819   #โ„ creap 8534   # cap 8541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542
This theorem is referenced by:  apne  8583  apcon4bid  8584  cnstab  8605  aptap  8610  qapne  9642  expeq0  10554  nn0opthd  10705  recvguniq  11007  climuni  11304  dedekindeu  14262  dedekindicclemicc  14271  ivthinc  14282  limcimo  14295  cnplimclemle  14298  coseq0q4123  14416  cos11  14435  refeq  14938  triap  14939
  Copyright terms: Public domain W3C validator